mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-25 15:55:03 +08:00
163 lines
3.5 KiB
Markdown
163 lines
3.5 KiB
Markdown
---
|
||
title: mbcp.mp_math.equation
|
||
---
|
||
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
|
||
|
||
|
||
求N元函数一阶偏导函数。这玩意不太稳定,慎用。
|
||
|
||
**Arguments**:
|
||
|
||
- func: 函数
|
||
|
||
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
|
||
|
||
- epsilon: 偏移量
|
||
|
||
**Return**:
|
||
|
||
- 偏导函数
|
||
|
||
**Raises**:
|
||
|
||
- ValueError 无效变量类型
|
||
|
||
|
||
|
||
<details>
|
||
<summary> <i>Source code</i> </summary>
|
||
|
||
```python
|
||
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
|
||
"""
|
||
求N元函数一阶偏导函数。这玩意不太稳定,慎用。
|
||
Args:
|
||
func: 函数
|
||
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
|
||
epsilon: 偏移量
|
||
Returns:
|
||
偏导函数
|
||
Raises:
|
||
ValueError: 无效变量类型
|
||
"""
|
||
if isinstance(var, int):
|
||
|
||
def partial_derivative_func(*args: Var) -> Var:
|
||
args_list_plus = list(args)
|
||
args_list_plus[var] += epsilon
|
||
args_list_minus = list(args)
|
||
args_list_minus[var] -= epsilon
|
||
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
|
||
return partial_derivative_func
|
||
elif isinstance(var, tuple):
|
||
|
||
def high_order_partial_derivative_func(*args: Var) -> Var:
|
||
result_func = func
|
||
for v in var:
|
||
result_func = get_partial_derivative_func(result_func, v, epsilon)
|
||
return result_func(*args)
|
||
return high_order_partial_derivative_func
|
||
else:
|
||
raise ValueError('Invalid var type')
|
||
```
|
||
</details>
|
||
|
||
### *func* `partial_derivative_func() -> Var`
|
||
|
||
|
||
<details>
|
||
<summary> <i>Source code</i> </summary>
|
||
|
||
```python
|
||
def partial_derivative_func(*args: Var) -> Var:
|
||
args_list_plus = list(args)
|
||
args_list_plus[var] += epsilon
|
||
args_list_minus = list(args)
|
||
args_list_minus[var] -= epsilon
|
||
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
|
||
```
|
||
</details>
|
||
|
||
### *func* `high_order_partial_derivative_func() -> Var`
|
||
|
||
|
||
<details>
|
||
<summary> <i>Source code</i> </summary>
|
||
|
||
```python
|
||
def high_order_partial_derivative_func(*args: Var) -> Var:
|
||
result_func = func
|
||
for v in var:
|
||
result_func = get_partial_derivative_func(result_func, v, epsilon)
|
||
return result_func(*args)
|
||
```
|
||
</details>
|
||
|
||
### **class** `CurveEquation`
|
||
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
|
||
|
||
|
||
曲线方程。
|
||
|
||
**Arguments**:
|
||
|
||
- x_func: x函数
|
||
|
||
- y_func: y函数
|
||
|
||
- z_func: z函数
|
||
|
||
|
||
|
||
<details>
|
||
<summary> <i>Source code</i> </summary>
|
||
|
||
```python
|
||
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
|
||
"""
|
||
曲线方程。
|
||
Args:
|
||
x_func: x函数
|
||
y_func: y函数
|
||
z_func: z函数
|
||
"""
|
||
self.x_func = x_func
|
||
self.y_func = y_func
|
||
self.z_func = z_func
|
||
```
|
||
</details>
|
||
|
||
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
|
||
|
||
|
||
计算曲线上的点。
|
||
|
||
**Arguments**:
|
||
|
||
- *t:
|
||
|
||
- 参数:
|
||
|
||
|
||
|
||
<details>
|
||
<summary> <i>Source code</i> </summary>
|
||
|
||
```python
|
||
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
|
||
"""
|
||
计算曲线上的点。
|
||
Args:
|
||
*t:
|
||
参数
|
||
Returns:
|
||
|
||
"""
|
||
if len(t) == 1:
|
||
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
|
||
else:
|
||
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
|
||
```
|
||
</details>
|
||
|