📝 litedoc新增类继承显示,新增变量自动获取注释,新增类方法和函数的区分,新增魔术方法的特殊展示模式

This commit is contained in:
远野千束(神羽) 2024-08-28 22:07:43 +08:00
parent de42d34e38
commit c6ab7f34e9
82 changed files with 9965 additions and 683 deletions

View File

@ -42,9 +42,9 @@ jobs:
- name: Setup API markdown
run: |-
python -m pip install pydantic
python -m liteyuki_autodoc mbcp -o docs/api -l zh-Hans
python -m liteyuki_autodoc mbcp -o docs/en/api -l en
python -m liteyuki_autodoc mbcp -o docs/ja/api -l ja
python -m litedoc mbcp -o docs/api -l zh-Hans
python -m litedoc mbcp -o docs/en/api -l en
python -m litedoc mbcp -o docs/ja/api -l ja
- name: 安装 pnpm
uses: pnpm/action-setup@v2

View File

@ -4,7 +4,11 @@ export const en = defineConfig({
lang: "en-US",
description: "A library made for Minecraft particle generation",
themeConfig: {
nav: [
{text: 'Get Start', link: '/guide'},
{text: 'API Document', link: '/api/'},
{text: 'Demo', link: '/demo/'},
],
},
})

View File

@ -3,6 +3,8 @@ import {defineConfig} from "vitepress";
import {common} from './common'
import {en} from './en'
import {zh} from './zh'
import {zht} from './zht'
import {ja} from './ja'
@ -10,6 +12,8 @@ export default defineConfig({
...common,
locales:{
root: { label: "简体中文", ...zh },
en: { label: "English", ...en }
en: { label: "English", ...en },
ja: { label: "日本語", ...ja },
zht: { label: "繁體中文", ...zht },
}
})

View File

@ -0,0 +1,14 @@
import {defineConfig} from 'vitepress'
export const ja = defineConfig({
lang: "ja-JP",
description: "Minecraftのパーティクル生成用のライブラリ",
themeConfig: {
nav: [
{text: 'スタート', link: '/guide'},
{text: 'APIドキュメント', link: '/api/'},
{text: 'インスタンス', link: '/demo/'},
],
},
})

View File

@ -1,21 +1,14 @@
import {defineConfig} from 'vitepress'
export const zh = defineConfig({
lang: "zh-Hans",
description: "一个用于Minecraft粒子计算和生成的库",
themeConfig: {
nav: [
{text: '快速开始', link: '/guide'},
{text: '快速开始', link: '/guide/'},
{text: 'API文档', link: '/api/'},
{text: '实例', link: '/demo/'},
],
// sidebar: {
// '/api/': {
// base: '/api/',
// items: [
// ]
// }
// }
},
})

View File

@ -0,0 +1,14 @@
import {defineConfig} from 'vitepress'
export const zht = defineConfig({
lang: "zh-Hant",
description: "一個用於Minecraft粒子計算和生成的軟體庫",
themeConfig: {
nav: [
{text: '指引', link: '/guide/'},
{text: 'API文檔', link: '/api/'},
{text: '示範', link: '/demo/'},
],
},
})

View File

@ -1,16 +1,14 @@
---
title: mbcp.mp_math.angle
---
### ***class*** `Angle`
### ***class*** `AnyAngle`
### *def* `__init__(self, value: float, is_radian: bool = False)`
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
任意角度。
参数:
**参数**:
- value: 角度或弧度值
@ -19,7 +17,7 @@ title: mbcp.mp_math.angle
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
@ -37,19 +35,19 @@ def __init__(self, value: float, is_radian: bool=False):
</details>
### `@property`
### *def* `complementary(self) -> 'AnyAngle'`
### *method* `complementary(self) -> AnyAngle`
余角两角的和为90°。
返回:
**返回**:
- 余角
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -64,19 +62,19 @@ def complementary(self) -> 'AnyAngle':
</details>
### `@property`
### *def* `supplementary(self) -> 'AnyAngle'`
### *method* `supplementary(self) -> AnyAngle`
补角两角的和为180°。
返回:
**返回**:
- 补角
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -91,19 +89,19 @@ def supplementary(self) -> 'AnyAngle':
</details>
### `@property`
### *def* `degree(self) -> float`
### *method* `degree(self) -> float`
角度。
返回:
**返回**:
- 弧度
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -118,19 +116,19 @@ def degree(self) -> float:
</details>
### `@property`
### *def* `minimum_positive(self) -> 'AnyAngle'`
### *method* `minimum_positive(self) -> AnyAngle`
最小正角。
返回:
**返回**:
- 最小正角度
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -145,19 +143,19 @@ def minimum_positive(self) -> 'AnyAngle':
</details>
### `@property`
### *def* `maximum_negative(self) -> 'AnyAngle'`
### *method* `maximum_negative(self) -> AnyAngle`
最大负角。
返回:
**返回**:
- 最大负角度
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -172,19 +170,19 @@ def maximum_negative(self) -> 'AnyAngle':
</details>
### `@property`
### *def* `sin(self) -> float`
### *method* `sin(self) -> float`
正弦值。
返回:
**返回**:
- 正弦值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -199,19 +197,19 @@ def sin(self) -> float:
</details>
### `@property`
### *def* `cos(self) -> float`
### *method* `cos(self) -> float`
余弦值。
返回:
**返回**:
- 余弦值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -226,19 +224,19 @@ def cos(self) -> float:
</details>
### `@property`
### *def* `tan(self) -> float`
### *method* `tan(self) -> float`
正切值。
返回:
**返回**:
- 正切值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -253,19 +251,19 @@ def tan(self) -> float:
</details>
### `@property`
### *def* `cot(self) -> float`
### *method* `cot(self) -> float`
余切值。
返回:
**返回**:
- 余切值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -280,19 +278,19 @@ def cot(self) -> float:
</details>
### `@property`
### *def* `sec(self) -> float`
### *method* `sec(self) -> float`
正割值。
返回:
**返回**:
- 正割值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -307,19 +305,19 @@ def sec(self) -> float:
</details>
### `@property`
### *def* `csc(self) -> float`
### *method* `csc(self) -> float`
余割值。
返回:
**返回**:
- 余割值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -333,11 +331,11 @@ def csc(self) -> float:
```
</details>
### *def* `__add__(self, other: 'AnyAngle') -> 'AnyAngle'`
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
@ -345,11 +343,11 @@ def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
```
</details>
### *def* `__eq__(self, other)`
### *method* `__eq__(self, other)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other):
@ -357,11 +355,11 @@ def __eq__(self, other):
```
</details>
### *def* `__sub__(self, other: 'AnyAngle') -> 'AnyAngle'`
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
@ -369,11 +367,11 @@ def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
```
</details>
### *def* `__mul__(self, other: float) -> 'AnyAngle'`
### *method* `self * other: float => AnyAngle`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
@ -381,36 +379,12 @@ def __mul__(self, other: float) -> 'AnyAngle':
```
</details>
### *def* `__repr__(self)`
<details>
<summary>源码</summary>
```python
def __repr__(self):
return f'AnyAngle({self.radian}, is_radian=True)'
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
return f'AnyAngle({self.degree}° or {self.radian} rad)'
```
</details>
### `@overload`
### *def* `__truediv__(self, other: float) -> 'AnyAngle'`
### *method* `self / other: float => AnyAngle`
<details>
<summary>源码</summary>
<summary> <i>源代码</i> </summary>
```python
@overload
@ -420,11 +394,11 @@ def __truediv__(self, other: float) -> 'AnyAngle':
</details>
### `@overload`
### *def* `__truediv__(self, other: 'AnyAngle') -> float`
### *method* `self / other: AnyAngle => float`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -433,11 +407,11 @@ def __truediv__(self, other: 'AnyAngle') -> float:
```
</details>
### *def* `__truediv__(self, other)`
### *method* `self / other`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __truediv__(self, other):

View File

@ -1,15 +1,3 @@
---
title: mbcp.mp_math.const
---
### ***var*** `PI = math.pi`
### ***var*** `E = math.e`
### ***var*** `GOLDEN_RATIO = (1 + math.sqrt(5)) / 2`
### ***var*** `GAMMA = 0.5772156649015329`
### ***var*** `EPSILON = 0.0001`
### ***var*** `APPROX = 0.001`

View File

@ -1,12 +1,12 @@
---
title: mbcp.mp_math.equation
---
### *def* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
求N元函数一阶偏导函数。这玩意不太稳定慎用。
参数:
**参数**:
- func: 函数
@ -14,10 +14,18 @@ title: mbcp.mp_math.equation
- epsilon: 偏移量
**返回**:
- 偏导函数
**引发**:
- ValueError 无效变量类型
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
@ -54,11 +62,11 @@ def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...],
```
</details>
### *def* `partial_derivative_func() -> Var`
### *func* `partial_derivative_func() -> Var`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
@ -70,11 +78,11 @@ def partial_derivative_func(*args: Var) -> Var:
```
</details>
### *def* `high_order_partial_derivative_func() -> Var`
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
@ -85,14 +93,13 @@ def high_order_partial_derivative_func(*args: Var) -> Var:
```
</details>
### ***class*** `CurveEquation`
### *def* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
曲线方程。
参数:
**参数**:
- x_func: x函数
@ -103,7 +110,7 @@ def high_order_partial_derivative_func(*args: Var) -> Var:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
@ -120,12 +127,12 @@ def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
```
</details>
### *def* `__call__(self) -> Point3 | tuple[Point3, ...]`
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
计算曲线上的点。
参数:
**参数**:
- *t:
@ -134,7 +141,7 @@ def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
@ -153,17 +160,3 @@ def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
return 'CurveEquation()'
```
</details>
### ***var*** `result_func = get_partial_derivative_func(result_func, v, epsilon)`

View File

@ -1,14 +1,13 @@
---
title: mbcp.mp_math.line
---
### ***class*** `Line3`
### *def* `__init__(self, point: 'Point3', direction: 'Vector3')`
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
三维空间中的直线。由一个点和一个方向向量确定。
参数:
**参数**:
- point: 直线上的一点
@ -17,7 +16,7 @@ title: mbcp.mp_math.line
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
@ -32,21 +31,25 @@ def __init__(self, point: 'Point3', direction: 'Vector3'):
```
</details>
### *def* `approx(self, other: 'Line3', epsilon: float = APPROX) -> bool`
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
判断两条直线是否近似相等。
参数:
**参数**:
- other: 另一条直线
- epsilon: 误差
**返回**:
- 是否近似相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
@ -62,19 +65,27 @@ def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
```
</details>
### *def* `cal_angle(self, other: 'Line3') -> 'AnyAngle'`
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
计算直线和直线之间的夹角。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 夹角弧度
**引发**:
- TypeError 不支持的类型
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
@ -91,19 +102,27 @@ def cal_angle(self, other: 'Line3') -> 'AnyAngle':
```
</details>
### *def* `cal_distance(self, other: 'Line3 | Point3') -> float`
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
计算直线和直线或点之间的距离。
参数:
**参数**:
- other: 平行直线或点
**返回**:
- 距离
**引发**:
- TypeError 不支持的类型
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
@ -133,19 +152,29 @@ def cal_distance(self, other: 'Line3 | Point3') -> float:
```
</details>
### *def* `cal_intersection(self, other: 'Line3') -> 'Point3'`
### *method* `cal_intersection(self, other: Line3) -> Point3`
计算两条直线的交点。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 交点
**引发**:
- ValueError 直线平行
- ValueError 直线不共面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
@ -167,19 +196,23 @@ def cal_intersection(self, other: 'Line3') -> 'Point3':
```
</details>
### *def* `cal_perpendicular(self, point: 'Point3') -> 'Line3'`
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
计算直线经过指定点p的垂线。
参数:
**参数**:
- point: 指定点
**返回**:
- 垂线
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
@ -194,19 +227,23 @@ def cal_perpendicular(self, point: 'Point3') -> 'Line3':
```
</details>
### *def* `get_point(self, t: RealNumber) -> 'Point3'`
### *method* `get_point(self, t: RealNumber) -> Point3`
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
参数:
**参数**:
- t: 参数t
**返回**:
- 点
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
@ -221,19 +258,19 @@ def get_point(self, t: RealNumber) -> 'Point3':
```
</details>
### *def* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
获取直线的参数方程。
返回:
**返回**:
- x(t), y(t), z(t)
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
@ -246,21 +283,25 @@ def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc,
```
</details>
### *def* `is_approx_parallel(self, other: 'Line3', epsilon: float = 1e-06) -> bool`
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
判断两条直线是否近似平行。
参数:
**参数**:
- other: 另一条直线
- epsilon: 误差
**返回**:
- 是否近似平行
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
@ -276,19 +317,23 @@ def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
```
</details>
### *def* `is_parallel(self, other: 'Line3') -> bool`
### *method* `is_parallel(self, other: Line3) -> bool`
判断两条直线是否平行。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 是否平行
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
@ -303,19 +348,23 @@ def is_parallel(self, other: 'Line3') -> bool:
```
</details>
### *def* `is_collinear(self, other: 'Line3') -> bool`
### *method* `is_collinear(self, other: Line3) -> bool`
判断两条直线是否共线。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 是否共线
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
@ -330,19 +379,23 @@ def is_collinear(self, other: 'Line3') -> bool:
```
</details>
### *def* `is_point_on(self, point: 'Point3') -> bool`
### *method* `is_point_on(self, point: Point3) -> bool`
判断点是否在直线上。
参数:
**参数**:
- point: 点
**返回**:
- 是否在直线上
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
@ -357,20 +410,24 @@ def is_point_on(self, point: 'Point3') -> bool:
```
</details>
### *def* `is_coplanar(self, other: 'Line3') -> bool`
### *method* `is_coplanar(self, other: Line3) -> bool`
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 是否共面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
@ -386,7 +443,7 @@ def is_coplanar(self, other: 'Line3') -> bool:
```
</details>
### *def* `simplify(self)`
### *method* `simplify(self)`
简化直线方程,等价相等。
@ -397,7 +454,7 @@ def is_coplanar(self, other: 'Line3') -> bool:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def simplify(self):
@ -418,21 +475,25 @@ def simplify(self):
</details>
### `@classmethod`
### *def* `from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3'`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
工厂函数 由两点构造直线。
参数:
**参数**:
- p1: 点1
- p2: 点2
**返回**:
- 直线
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@classmethod
@ -450,19 +511,23 @@ def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
```
</details>
### *def* `__and__(self, other: 'Line3') -> 'Line3 | Point3 | None'`
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
参数:
**参数**:
- other: 另一条直线
**返回**:
- 交点
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
@ -482,21 +547,21 @@ def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
```
</details>
### *def* `__eq__(self, other) -> bool`
### *method* `__eq__(self, other) -> bool`
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other) -> bool:
@ -514,43 +579,3 @@ def __eq__(self, other) -> bool:
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
"""
返回点向式x-x0
Returns:
"""
s = 'Line3: '
if self.direction.x != 0:
s += f'(x{sign_format(-self.point.x)})/{self.direction.x}'
if self.direction.y != 0:
s += f' = (y{sign_format(-self.point.y)})/{self.direction.y}'
if self.direction.z != 0:
s += f' = (z{sign_format(-self.point.z)})/{self.direction.z}'
return s
```
</details>
### *def* `__repr__(self)`
<details>
<summary>源码</summary>
```python
def __repr__(self):
return f'Line3({self.point}, {self.direction})'
```
</details>

View File

@ -1,37 +1,63 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber: TypeAlias = int | float`
### ***var*** `RealNumber = int | float`
### ***var*** `Number: TypeAlias = RealNumber | complex`
- **类型**: `TypeAlias`
### ***var*** `SingleVar = TypeVar('SingleVar', bound=Number)`
### ***var*** `Number = RealNumber | complex`
### ***var*** `ArrayVar = TypeVar('ArrayVar', bound=Iterable[Number])`
- **类型**: `TypeAlias`
### ***var*** `Var: TypeAlias = SingleVar | ArrayVar`
### ***var*** `Var = SingleVar | ArrayVar`
### ***var*** `OneSingleVarFunc: TypeAlias = Callable[[SingleVar], SingleVar]`
- **类型**: `TypeAlias`
### ***var*** `OneArrayFunc: TypeAlias = Callable[[ArrayVar], ArrayVar]`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
### ***var*** `OneVarFunc: TypeAlias = OneSingleVarFunc | OneArrayFunc`
- **类型**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc: TypeAlias = Callable[[SingleVar, SingleVar], SingleVar]`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
### ***var*** `TwoArraysFunc: TypeAlias = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **类型**: `TypeAlias`
### ***var*** `TwoVarsFunc: TypeAlias = TwoSingleVarsFunc | TwoArraysFunc`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
### ***var*** `ThreeSingleVarsFunc: TypeAlias = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **类型**: `TypeAlias`
### ***var*** `ThreeArraysFunc: TypeAlias = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
### ***var*** `ThreeVarsFunc: TypeAlias = ThreeSingleVarsFunc | ThreeArraysFunc`
- **类型**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc: TypeAlias = Callable[..., SingleVar]`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
### ***var*** `MultiArraysFunc: TypeAlias = Callable[..., ArrayVar]`
- **类型**: `TypeAlias`
### ***var*** `MultiVarsFunc: TypeAlias = MultiSingleVarsFunc | MultiArraysFunc`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **类型**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **类型**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **类型**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **类型**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **类型**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **类型**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **类型**: `TypeAlias`

View File

@ -1,37 +1,36 @@
---
title: mbcp.mp_math.plane
---
### ***class*** `Plane3`
### *def* `__init__(self, a: float, b: float, c: float, d: float)`
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
平面方程ax + by + cz + d = 0
参数:
**参数**:
- a:
- a: x系数
- b:
- b: y系数
- c:
- c: z系数
- d:
- d: 常数项
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a:
b:
c:
d:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
@ -40,31 +39,33 @@ def __init__(self, a: float, b: float, c: float, d: float):
```
</details>
### *def* `approx(self, other: 'Plane3') -> bool`
### *method* `approx(self, other: Plane3) -> bool`
判断两个平面是否近似相等。
参数:
**参数**:
- other:
- other: 另一个平面
**返回**:
- 是否近似相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other:
other: 另一个平面
Returns:
是否近似相等
"""
a = 3
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
@ -79,19 +80,27 @@ def approx(self, other: 'Plane3') -> bool:
```
</details>
### *def* `cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle'`
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
计算平面与平面之间的夹角。
参数:
**参数**:
- other: 另一个平面
**返回**:
- 夹角弧度
**引发**:
- TypeError 不支持的类型
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
@ -113,19 +122,27 @@ def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
```
</details>
### *def* `cal_distance(self, other: 'Plane3 | Point3') -> float`
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
计算平面与平面或点之间的距离。
参数:
**参数**:
- other: 另一个平面或点
**返回**:
- 距离
**引发**:
- TypeError 不支持的类型
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
@ -147,28 +164,32 @@ def cal_distance(self, other: 'Plane3 | Point3') -> float:
```
</details>
### *def* `cal_intersection_line3(self, other: 'Plane3') -> 'Line3'`
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
计算两平面的交线。该方法有问题,待修复。
计算两平面的交线。
参数:
**参数**:
- other: 另一个平面
**返回**:
- 两平面的交线
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。该方法有问题,待修复。
计算两平面的交线。
Args:
other: 另一个平面
Returns:
交线
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
@ -191,19 +212,27 @@ def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
```
</details>
### *def* `cal_intersection_point3(self, other: 'Line3') -> 'Point3'`
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
计算平面与直线的交点。
参数:
**参数**:
- other: 不与平面平行或在平面上的直线
**返回**:
- 交点
**引发**:
- ValueError 平面与直线平行或重合
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
@ -224,19 +253,23 @@ def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
```
</details>
### *def* `cal_parallel_plane3(self, point: 'Point3') -> 'Plane3'`
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
计算平行于该平面且过指定点的平面。
参数:
**参数**:
- point: 指定点
**返回**:
- 所求平面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
@ -245,25 +278,29 @@ def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
Args:
point: 指定点
Returns:
平面
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *def* `is_parallel(self, other: 'Plane3') -> bool`
### *method* `is_parallel(self, other: Plane3) -> bool`
判断两个平面是否平行。
参数:
**参数**:
- other: 另一个平面
**返回**:
- 是否平行
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
@ -279,19 +316,19 @@ def is_parallel(self, other: 'Plane3') -> bool:
</details>
### `@property`
### *def* `normal(self) -> 'Vector3'`
### *method* `normal(self) -> Vector3`
平面的法向量。
返回:
**返回**:
- 法向量
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -306,21 +343,25 @@ def normal(self) -> 'Vector3':
</details>
### `@classmethod`
### *def* `from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3'`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
工厂函数 由点和法向量构造平面(点法式构造)。
参数:
**参数**:
- point: 平面上的一点
- normal: 法向量
**返回**:
- 平面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@classmethod
@ -340,12 +381,12 @@ def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
</details>
### `@classmethod`
### *def* `from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3'`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
工厂函数 由三点构造平面。
参数:
**参数**:
- p1: 点1
@ -353,10 +394,14 @@ def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
- p3: 点3
**返回**:
- 平面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@classmethod
@ -378,21 +423,25 @@ def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3'
</details>
### `@classmethod`
### *def* `from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3'`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
工厂函数 由两直线构造平面。
参数:
**参数**:
- l1: 直线1
- l2: 直线2
**返回**:
- 平面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@classmethod
@ -414,21 +463,25 @@ def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
</details>
### `@classmethod`
### *def* `from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3'`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
工厂函数 由点和直线构造平面。
参数:
**参数**:
- point: 面上一点
- line: 面上直线,不包含点
**返回**:
- 平面
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@classmethod
@ -445,45 +498,12 @@ def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
```
</details>
### *def* `__repr__(self)`
<details>
<summary>源码</summary>
```python
def __repr__(self):
return f'Plane3({self.a}, {self.b}, {self.c}, {self.d})'
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
s = 'Plane3: '
if self.a != 0:
s += f'{sign(self.a, only_neg=True)}{abs(self.a)}x'
if self.b != 0:
s += f' {sign(self.b)} {abs(self.b)}y'
if self.c != 0:
s += f' {sign(self.c)} {abs(self.c)}z'
if self.d != 0:
s += f' {sign(self.d)} {abs(self.d)}'
return s + ' = 0'
```
</details>
### `@overload`
### *def* `__and__(self, other: 'Line3') -> 'Point3 | None'`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary>源码</summary>
<summary> <i>源代码</i> </summary>
```python
@overload
@ -493,11 +513,11 @@ def __and__(self, other: 'Line3') -> 'Point3 | None':
</details>
### `@overload`
### *def* `__and__(self, other: 'Plane3') -> 'Line3 | None'`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -506,19 +526,23 @@ def __and__(self, other: 'Plane3') -> 'Line3 | None':
```
</details>
### *def* `__and__(self, other)`
### *method* `__and__(self, other)`
取两平面的交集(人话:交线)
参数:
**参数**:
- other:
**返回**:
- 不平行平面的交线平面平行返回None
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __and__(self, other):
@ -542,11 +566,11 @@ def __and__(self, other):
```
</details>
### *def* `__eq__(self, other) -> bool`
### *method* `__eq__(self, other) -> bool`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other) -> bool:
@ -554,11 +578,11 @@ def __eq__(self, other) -> bool:
```
</details>
### *def* `__rand__(self, other: 'Line3') -> 'Point3'`
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
@ -566,23 +590,3 @@ def __rand__(self, other: 'Line3') -> 'Point3':
```
</details>
### ***var*** `k = other.a / self.a`
### ***var*** `A = np.array([[self.b, self.c], [other.b, other.c]])`
### ***var*** `B = np.array([-self.d, -other.d])`
### ***var*** `v2 = l2.get_point(1) - l1.point`
### ***var*** `k = other.b / self.b`
### ***var*** `A = np.array([[self.a, self.c], [other.a, other.c]])`
### ***var*** `B = np.array([-self.d, -other.d])`
### ***var*** `k = other.c / self.c`
### ***var*** `A = np.array([[self.a, self.b], [other.a, other.b]])`
### ***var*** `B = np.array([-self.d, -other.d])`

View File

@ -1,14 +1,13 @@
---
title: mbcp.mp_math.point
---
### ***class*** `Point3`
### *def* `__init__(self, x: float, y: float, z: float)`
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
笛卡尔坐标系中的点。
参数:
**参数**:
- x: x 坐标
@ -19,7 +18,7 @@ title: mbcp.mp_math.point
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
@ -36,21 +35,25 @@ def __init__(self, x: float, y: float, z: float):
```
</details>
### *def* `approx(self, other: 'Point3', epsilon: float = APPROX) -> bool`
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
判断两个点是否近似相等。
参数:
**参数**:
- other:
- epsilon:
**返回**:
- 是否近似相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
@ -67,24 +70,12 @@ def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
return f'Point3({self.x}, {self.y}, {self.z})'
```
</details>
### `@overload`
### *def* `__add__(self, other: 'Vector3') -> 'Point3'`
### *method* `self + other: Vector3 => Point3`
<details>
<summary>源码</summary>
<summary> <i>源代码</i> </summary>
```python
@overload
@ -94,11 +85,11 @@ def __add__(self, other: 'Vector3') -> 'Point3':
</details>
### `@overload`
### *def* `__add__(self, other: 'Point3') -> 'Point3'`
### *method* `self + other: Point3 => Point3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -107,20 +98,20 @@ def __add__(self, other: 'Point3') -> 'Point3':
```
</details>
### *def* `__add__(self, other)`
### *method* `self + other`
P + V -> P
P + P -> P
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __add__(self, other):
@ -135,19 +126,19 @@ def __add__(self, other):
```
</details>
### *def* `__eq__(self, other)`
### *method* `__eq__(self, other)`
判断两个点是否相等。
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other):
@ -161,21 +152,21 @@ def __eq__(self, other):
```
</details>
### *def* `__sub__(self, other: 'Point3') -> 'Vector3'`
### *method* `self - other: Point3 => Vector3`
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':

View File

@ -1,9 +1,8 @@
---
title: mbcp.mp_math.segment
---
### ***class*** `Segment3`
### *def* `__init__(self, p1: 'Point3', p2: 'Point3')`
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
三维空间中的线段。
@ -13,7 +12,7 @@ title: mbcp.mp_math.segment
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
@ -33,27 +32,3 @@ def __init__(self, p1: 'Point3', p2: 'Point3'):
```
</details>
### *def* `__repr__(self)`
<details>
<summary>源码</summary>
```python
def __repr__(self):
return f'Segment3({self.p1}, {self.p2})'
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
return f'Segment3({self.p1} -> {self.p2})'
```
</details>

View File

@ -1,32 +1,36 @@
---
title: mbcp.mp_math.utils
---
### *def* `clamp() -> float`
### *func* `clamp() -> float`
区间截断函数。
区间限定函数
参数:
**参数**:
- x:
- x: 待限定的值
- min_:
- min_: 最小值
- max_:
- max_: 最大值
**返回**:
- 限制后的值
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间截断函数。
区间限定函数
Args:
x:
min_:
max_:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
@ -35,33 +39,36 @@ def clamp(x: float, min_: float, max_: float) -> float:
```
</details>
### *def* `approx(x: float = 0.0, y: float = APPROX) -> bool`
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
参数:
**参数**:
- x:
- x: 数1
- y:
- y: 数2
- epsilon:
- epsilon: 误差
**返回**:
- 是否近似相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x:
y:
epsilon:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
@ -69,21 +76,25 @@ def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
```
</details>
### *def* `sign(x: float = False) -> str`
### *func* `sign(x: float = False) -> str`
获取数的符号。
参数:
**参数**:
- x: 数
- only_neg: 是否只返回负数的符号
**返回**:
- 符号 + - ""
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
@ -103,7 +114,7 @@ def sign(x: float, only_neg: bool=False) -> str:
```
</details>
### *def* `sign_format(x: float = False) -> str`
### *func* `sign_format(x: float = False) -> str`
格式化符号数
@ -111,16 +122,20 @@ def sign(x: float, only_neg: bool=False) -> str:
1 -> +1
0 -> ""
参数:
**参数**:
- x: 数
- only_neg: 是否只返回负数的符号
**返回**:
- 符号 + - ""
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
@ -143,13 +158,12 @@ def sign_format(x: float, only_neg: bool=False) -> str:
```
</details>
### ***class*** `Approx`
### *def* `__init__(self, value: RealNumber)`
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, value: RealNumber):
@ -157,11 +171,11 @@ def __init__(self, value: RealNumber):
```
</details>
### *def* `__eq__(self, other)`
### *method* `__eq__(self, other)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other):
@ -178,11 +192,11 @@ def __eq__(self, other):
```
</details>
### *def* `raise_type_error(self, other)`
### *method* `raise_type_error(self, other)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def raise_type_error(self, other):
@ -190,11 +204,11 @@ def raise_type_error(self, other):
```
</details>
### *def* `__ne__(self, other)`
### *method* `__ne__(self, other)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __ne__(self, other):

View File

@ -1,14 +1,13 @@
---
title: mbcp.mp_math.vector
---
### ***class*** `Vector3`
### *def* `__init__(self, x: float, y: float, z: float)`
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
3维向量
参数:
**参数**:
- x: x轴分量
@ -19,7 +18,7 @@ title: mbcp.mp_math.vector
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
@ -36,21 +35,25 @@ def __init__(self, x: float, y: float, z: float):
```
</details>
### *def* `approx(self, other: 'Vector3', epsilon: float = APPROX) -> bool`
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似相等。
参数:
**参数**:
- other:
- epsilon:
**返回**:
- 是否近似相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
@ -67,19 +70,23 @@ def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
```
</details>
### *def* `cal_angle(self, other: 'Vector3') -> 'AnyAngle'`
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
计算两个向量之间的夹角。
参数:
**参数**:
- other: 另一个向量
**返回**:
- 夹角
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
@ -94,7 +101,7 @@ def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
```
</details>
### *def* `cross(self, other: 'Vector3') -> 'Vector3'`
### *method* `cross(self, other: Vector3) -> Vector3`
向量积 叉乘v1 cross v2 -> v3
@ -103,10 +110,18 @@ def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
其余结果的模为平行四边形的面积。
**参数**:
- other:
**返回**:
- 行列式的结果
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
@ -133,21 +148,25 @@ def cross(self, other: 'Vector3') -> 'Vector3':
```
</details>
### *def* `is_approx_parallel(self, other: 'Vector3', epsilon: float = APPROX) -> bool`
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似平行。
参数:
**参数**:
- other: 另一个向量
- epsilon: 允许的误差
**返回**:
- 是否近似平行
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
@ -163,19 +182,23 @@ def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
```
</details>
### *def* `is_parallel(self, other: 'Vector3') -> bool`
### *method* `is_parallel(self, other: Vector3) -> bool`
判断两个向量是否平行。
参数:
**参数**:
- other: 另一个向量
**返回**:
- 是否平行
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
@ -190,7 +213,7 @@ def is_parallel(self, other: 'Vector3') -> bool:
```
</details>
### *def* `normalize(self)`
### *method* `normalize(self)`
将向量归一化。
@ -200,7 +223,7 @@ def is_parallel(self, other: 'Vector3') -> bool:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def normalize(self):
@ -217,7 +240,7 @@ def normalize(self):
</details>
### `@property`
### *def* `np_array(self) -> 'np.ndarray'`
### *method* `np_array(self) -> np.ndarray`
@ -225,7 +248,7 @@ def normalize(self):
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -239,19 +262,19 @@ def np_array(self) -> 'np.ndarray':
</details>
### `@property`
### *def* `length(self) -> float`
### *method* `length(self) -> float`
向量的模。
返回:
**返回**:
- 模
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -266,19 +289,19 @@ def length(self) -> float:
</details>
### `@property`
### *def* `unit(self) -> 'Vector3'`
### *method* `unit(self) -> Vector3`
获取该向量的单位向量。
返回:
**返回**:
- 单位向量
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@property
@ -292,11 +315,11 @@ def unit(self) -> 'Vector3':
```
</details>
### *def* `__abs__(self)`
### *method* `__abs__(self)`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __abs__(self):
@ -305,11 +328,11 @@ def __abs__(self):
</details>
### `@overload`
### *def* `__add__(self, other: 'Vector3') -> 'Vector3'`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -319,11 +342,11 @@ def __add__(self, other: 'Vector3') -> 'Vector3':
</details>
### `@overload`
### *def* `__add__(self, other: 'Point3') -> 'Point3'`
### *method* `self + other: Point3 => Point3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -332,21 +355,21 @@ def __add__(self, other: 'Point3') -> 'Point3':
```
</details>
### *def* `__add__(self, other)`
### *method* `self + other`
V + P -> P
V + V -> V
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __add__(self, other):
@ -368,19 +391,23 @@ def __add__(self, other):
```
</details>
### *def* `__eq__(self, other)`
### *method* `__eq__(self, other)`
判断两个向量是否相等。
参数:
**参数**:
- other:
**返回**:
- 是否相等
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __eq__(self, other):
@ -395,7 +422,7 @@ def __eq__(self, other):
```
</details>
### *def* `__radd__(self, other: 'Point3') -> 'Point3'`
### *method* `self + other: Point3 => Point3`
P + V -> P
@ -407,7 +434,7 @@ P + V -> P
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
@ -423,11 +450,11 @@ def __radd__(self, other: 'Point3') -> 'Point3':
</details>
### `@overload`
### *def* `__sub__(self, other: 'Vector3') -> 'Vector3'`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -437,11 +464,11 @@ def __sub__(self, other: 'Vector3') -> 'Vector3':
</details>
### `@overload`
### *def* `__sub__(self, other: 'Point3') -> 'Point3'`
### *method* `self - other: Point3 => Point3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -450,21 +477,21 @@ def __sub__(self, other: 'Point3') -> 'Point3':
```
</details>
### *def* `__sub__(self, other)`
### *method* `self - other`
V - P -> P
V - V -> V
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __sub__(self, other):
@ -485,19 +512,19 @@ def __sub__(self, other):
```
</details>
### *def* `__rsub__(self, other: 'Point3')`
### *method* `self - other: Point3`
P - V -> P
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __rsub__(self, other: 'Point3'):
@ -516,11 +543,11 @@ def __rsub__(self, other: 'Point3'):
</details>
### `@overload`
### *def* `__mul__(self, other: 'Vector3') -> 'Vector3'`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -530,11 +557,11 @@ def __mul__(self, other: 'Vector3') -> 'Vector3':
</details>
### `@overload`
### *def* `__mul__(self, other: RealNumber) -> 'Vector3'`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@overload
@ -543,19 +570,19 @@ def __mul__(self, other: RealNumber) -> 'Vector3':
```
</details>
### *def* `__mul__(self, other: 'int | float | Vector3') -> 'Vector3'`
### *method* `self * other: int | float | Vector3 => Vector3`
数组运算 非点乘。点乘使用@叉乘使用cross。
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
@ -575,11 +602,11 @@ def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
```
</details>
### *def* `__rmul__(self, other: 'RealNumber') -> 'Vector3'`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
@ -587,19 +614,19 @@ def __rmul__(self, other: 'RealNumber') -> 'Vector3':
```
</details>
### *def* `__matmul__(self, other: 'Vector3') -> 'RealNumber'`
### *method* `self @ other: Vector3 => RealNumber`
点乘。
参数:
**参数**:
- other:
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
@ -613,11 +640,11 @@ def __matmul__(self, other: 'Vector3') -> 'RealNumber':
```
</details>
### *def* `__truediv__(self, other: RealNumber) -> 'Vector3'`
### *method* `self / other: RealNumber => Vector3`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
@ -625,11 +652,11 @@ def __truediv__(self, other: RealNumber) -> 'Vector3':
```
</details>
### *def* `__neg__(self)`
### *method* `- self`
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
def __neg__(self):
@ -637,35 +664,27 @@ def __neg__(self):
```
</details>
### *def* `__repr__(self)`
<details>
<summary>源码</summary>
```python
def __repr__(self):
return f'Vector3({self.x}, {self.y}, {self.z})'
```
</details>
### *def* `__str__(self)`
<details>
<summary>源码</summary>
```python
def __str__(self):
return f'Vector3({self.x}, {self.y}, {self.z})'
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **类型**: `Vector3`
- **说明**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **类型**: `Vector3`
- **说明**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **类型**: `Vector3`
- **说明**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **类型**: `Vector3`
- **说明**: z轴单位向量

View File

@ -1,24 +1,27 @@
---
title: mbcp.presets.model
---
### ***class*** `GeometricModels`
### **class** `GeometricModels`
### `@staticmethod`
### *def* `sphere(radius: float, density: float)`
### *method* `sphere(radius: float, density: float)`
生成球体上的点集。
参数:
**参数**:
- radius:
- density:
**返回**:
- List[Point3]: 球体上的点集。
<details>
<summary>源码</summary>
<summary> <i></i> </summary>
```python
@staticmethod

3
docs/en/api/index.md Normal file
View File

@ -0,0 +1,3 @@
---
title: mbcp
---

View File

@ -0,0 +1,423 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
任意角度。
**Arguments**:
- value: 角度或弧度值
- is_radian: 是否为弧度,默认为否
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
余角两角的和为90°。
**Return**:
- 余角
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
补角两角的和为180°。
**Return**:
- 补角
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
角度。
**Return**:
- 弧度
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
最小正角。
**Return**:
- 最小正角度
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
最大负角。
**Return**:
- 最大负角度
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
正弦值。
**Return**:
- 正弦值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
余弦值。
**Return**:
- 余弦值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
正切值。
**Return**:
- 正切值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
余切值。
**Return**:
- 余切值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
正割值。
**Return**:
- 正割值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
余割值。
**Return**:
- 余割值
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <i>Source code</i> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <i>Source code</i> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <i>Source code</i> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <i>Source code</i> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math.const
---

View File

@ -0,0 +1,162 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
求N元函数一阶偏导函数。这玩意不太稳定慎用。
**Arguments**:
- func: 函数
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
- epsilon: 偏移量
**Return**:
- 偏导函数
**Raises**:
- ValueError 无效变量类型
<details>
<summary> <i>Source code</i> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <i>Source code</i> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <i>Source code</i> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
曲线方程。
**Arguments**:
- x_func: x函数
- y_func: y函数
- z_func: z函数
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
计算曲线上的点。
**Arguments**:
- *t:
- 参数:
<details>
<summary> <i>Source code</i> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math
---

581
docs/en/api/mp_math/line.md Normal file
View File

@ -0,0 +1,581 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
三维空间中的直线。由一个点和一个方向向量确定。
**Arguments**:
- point: 直线上的一点
- direction: 直线的方向向量
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
判断两条直线是否近似相等。
**Arguments**:
- other: 另一条直线
- epsilon: 误差
**Return**:
- 是否近似相等
<details>
<summary> <i>Source code</i> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
计算直线和直线之间的夹角。
**Arguments**:
- other: 另一条直线
**Return**:
- 夹角弧度
**Raises**:
- TypeError 不支持的类型
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
计算直线和直线或点之间的距离。
**Arguments**:
- other: 平行直线或点
**Return**:
- 距离
**Raises**:
- TypeError 不支持的类型
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
计算两条直线的交点。
**Arguments**:
- other: 另一条直线
**Return**:
- 交点
**Raises**:
- ValueError 直线平行
- ValueError 直线不共面
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
计算直线经过指定点p的垂线。
**Arguments**:
- point: 指定点
**Return**:
- 垂线
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**Arguments**:
- t: 参数t
**Return**:
- 点
<details>
<summary> <i>Source code</i> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
获取直线的参数方程。
**Return**:
- x(t), y(t), z(t)
<details>
<summary> <i>Source code</i> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
判断两条直线是否近似平行。
**Arguments**:
- other: 另一条直线
- epsilon: 误差
**Return**:
- 是否近似平行
<details>
<summary> <i>Source code</i> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
判断两条直线是否平行。
**Arguments**:
- other: 另一条直线
**Return**:
- 是否平行
<details>
<summary> <i>Source code</i> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
判断两条直线是否共线。
**Arguments**:
- other: 另一条直线
**Return**:
- 是否共线
<details>
<summary> <i>Source code</i> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
判断点是否在直线上。
**Arguments**:
- point: 点
**Return**:
- 是否在直线上
<details>
<summary> <i>Source code</i> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**Arguments**:
- other: 另一条直线
**Return**:
- 是否共面
<details>
<summary> <i>Source code</i> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <i>Source code</i> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
工厂函数 由两点构造直线。
**Arguments**:
- p1: 点1
- p2: 点2
**Return**:
- 直线
<details>
<summary> <i>Source code</i> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**Arguments**:
- other: 另一条直线
**Return**:
- 交点
<details>
<summary> <i>Source code</i> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -0,0 +1,63 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **Type**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **Type**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **Type**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **Type**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **Type**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **Type**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **Type**: `TypeAlias`

View File

@ -0,0 +1,592 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
平面方程ax + by + cz + d = 0
**Arguments**:
- a: x系数
- b: y系数
- c: z系数
- d: 常数项
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
判断两个平面是否近似相等。
**Arguments**:
- other: 另一个平面
**Return**:
- 是否近似相等
<details>
<summary> <i>Source code</i> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
计算平面与平面之间的夹角。
**Arguments**:
- other: 另一个平面
**Return**:
- 夹角弧度
**Raises**:
- TypeError 不支持的类型
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
计算平面与平面或点之间的距离。
**Arguments**:
- other: 另一个平面或点
**Return**:
- 距离
**Raises**:
- TypeError 不支持的类型
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
计算两平面的交线。
**Arguments**:
- other: 另一个平面
**Return**:
- 两平面的交线
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
计算平面与直线的交点。
**Arguments**:
- other: 不与平面平行或在平面上的直线
**Return**:
- 交点
**Raises**:
- ValueError 平面与直线平行或重合
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
计算平行于该平面且过指定点的平面。
**Arguments**:
- point: 指定点
**Return**:
- 所求平面
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
判断两个平面是否平行。
**Arguments**:
- other: 另一个平面
**Return**:
- 是否平行
<details>
<summary> <i>Source code</i> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
平面的法向量。
**Return**:
- 法向量
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
工厂函数 由点和法向量构造平面(点法式构造)。
**Arguments**:
- point: 平面上的一点
- normal: 法向量
**Return**:
- 平面
<details>
<summary> <i>Source code</i> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
工厂函数 由三点构造平面。
**Arguments**:
- p1: 点1
- p2: 点2
- p3: 点3
**Return**:
- 平面
<details>
<summary> <i>Source code</i> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
工厂函数 由两直线构造平面。
**Arguments**:
- l1: 直线1
- l2: 直线2
**Return**:
- 平面
<details>
<summary> <i>Source code</i> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
工厂函数 由点和直线构造平面。
**Arguments**:
- point: 面上一点
- line: 面上直线,不包含点
**Return**:
- 平面
<details>
<summary> <i>Source code</i> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
取两平面的交集(人话:交线)
**Arguments**:
- other:
**Return**:
- 不平行平面的交线平面平行返回None
<details>
<summary> <i>Source code</i> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <i>Source code</i> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -0,0 +1,186 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
笛卡尔坐标系中的点。
**Arguments**:
- x: x 坐标
- y: y 坐标
- z: z 坐标
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
判断两个点是否近似相等。
**Arguments**:
- other:
- epsilon:
**Return**:
- 是否近似相等
<details>
<summary> <i>Source code</i> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
P + V -> P
P + P -> P
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
判断两个点是否相等。
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -0,0 +1,34 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -0,0 +1,218 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
区间限定函数
**Arguments**:
- x: 待限定的值
- min_: 最小值
- max_: 最大值
**Return**:
- 限制后的值
<details>
<summary> <i>Source code</i> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**Arguments**:
- x: 数1
- y: 数2
- epsilon: 误差
**Return**:
- 是否近似相等
<details>
<summary> <i>Source code</i> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
获取数的符号。
**Arguments**:
- x: 数
- only_neg: 是否只返回负数的符号
**Return**:
- 符号 + - ""
<details>
<summary> <i>Source code</i> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**Arguments**:
- x: 数
- only_neg: 是否只返回负数的符号
**Return**:
- 符号 + - ""
<details>
<summary> <i>Source code</i> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <i>Source code</i> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <i>Source code</i> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -0,0 +1,690 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
3维向量
**Arguments**:
- x: x轴分量
- y: y轴分量
- z: z轴分量
<details>
<summary> <i>Source code</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似相等。
**Arguments**:
- other:
- epsilon:
**Return**:
- 是否近似相等
<details>
<summary> <i>Source code</i> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
计算两个向量之间的夹角。
**Arguments**:
- other: 另一个向量
**Return**:
- 夹角
<details>
<summary> <i>Source code</i> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**Arguments**:
- other:
**Return**:
- 行列式的结果
<details>
<summary> <i>Source code</i> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似平行。
**Arguments**:
- other: 另一个向量
- epsilon: 允许的误差
**Return**:
- 是否近似平行
<details>
<summary> <i>Source code</i> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
判断两个向量是否平行。
**Arguments**:
- other: 另一个向量
**Return**:
- 是否平行
<details>
<summary> <i>Source code</i> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
将向量归一化。
自体归一化,不返回值。
<details>
<summary> <i>Source code</i> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
向量的模。
**Return**:
- 模
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
获取该向量的单位向量。
**Return**:
- 单位向量
<details>
<summary> <i>Source code</i> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <i>Source code</i> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
V + P -> P
V + V -> V
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
判断两个向量是否相等。
**Arguments**:
- other:
**Return**:
- 是否相等
<details>
<summary> <i>Source code</i> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <i>Source code</i> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
V - P -> P
V - V -> V
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
P - V -> P
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
数组运算 非点乘。点乘使用@叉乘使用cross。
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
点乘。
**Arguments**:
- other:
<details>
<summary> <i>Source code</i> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <i>Source code</i> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <i>Source code</i> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **Type**: `Vector3`
- **Description**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **Type**: `Vector3`
- **Description**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **Type**: `Vector3`
- **Description**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **Type**: `Vector3`
- **Description**: z轴单位向量

View File

@ -0,0 +1,3 @@
---
title: mbcp.particle
---

View File

@ -0,0 +1,3 @@
---
title: mbcp.presets
---

View File

@ -0,0 +1,47 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
生成球体上的点集。
**Arguments**:
- radius:
- density:
**Return**:
- List[Point3]: 球体上的点集。
<details>
<summary> <i>Source code</i> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>

1
docs/guide/index.md Normal file
View File

@ -0,0 +1 @@
# 开始不了一点

View File

@ -9,7 +9,7 @@ hero:
actions:
- theme: brand
text: 快速开始
link: md-ex
link: guide/
- theme: alt
text: API文档
link: api/

3
docs/ja/api/index.md Normal file
View File

@ -0,0 +1,3 @@
---
title: mbcp
---

View File

@ -0,0 +1,423 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
任意角度。
**引数**:
- value: 角度或弧度值
- is_radian: 是否为弧度,默认为否
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
余角两角的和为90°。
**戻り値**:
- 余角
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
补角两角的和为180°。
**戻り値**:
- 补角
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
角度。
**戻り値**:
- 弧度
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
最小正角。
**戻り値**:
- 最小正角度
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
最大负角。
**戻り値**:
- 最大负角度
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
正弦值。
**戻り値**:
- 正弦值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
余弦值。
**戻り値**:
- 余弦值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
正切值。
**戻り値**:
- 正切值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
余切值。
**戻り値**:
- 余切值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
正割值。
**戻り値**:
- 正割值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
余割值。
**戻り値**:
- 余割值
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math.const
---

View File

@ -0,0 +1,162 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
求N元函数一阶偏导函数。这玩意不太稳定慎用。
**引数**:
- func: 函数
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
- epsilon: 偏移量
**戻り値**:
- 偏导函数
**例外**:
- ValueError 无效变量类型
<details>
<summary> <i>ソースコード</i> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
曲线方程。
**引数**:
- x_func: x函数
- y_func: y函数
- z_func: z函数
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
计算曲线上的点。
**引数**:
- *t:
- 参数:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math
---

581
docs/ja/api/mp_math/line.md Normal file
View File

@ -0,0 +1,581 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
三维空间中的直线。由一个点和一个方向向量确定。
**引数**:
- point: 直线上的一点
- direction: 直线的方向向量
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
判断两条直线是否近似相等。
**引数**:
- other: 另一条直线
- epsilon: 误差
**戻り値**:
- 是否近似相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
计算直线和直线之间的夹角。
**引数**:
- other: 另一条直线
**戻り値**:
- 夹角弧度
**例外**:
- TypeError 不支持的类型
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
计算直线和直线或点之间的距离。
**引数**:
- other: 平行直线或点
**戻り値**:
- 距离
**例外**:
- TypeError 不支持的类型
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
计算两条直线的交点。
**引数**:
- other: 另一条直线
**戻り値**:
- 交点
**例外**:
- ValueError 直线平行
- ValueError 直线不共面
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
计算直线经过指定点p的垂线。
**引数**:
- point: 指定点
**戻り値**:
- 垂线
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**引数**:
- t: 参数t
**戻り値**:
- 点
<details>
<summary> <i>ソースコード</i> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
获取直线的参数方程。
**戻り値**:
- x(t), y(t), z(t)
<details>
<summary> <i>ソースコード</i> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
判断两条直线是否近似平行。
**引数**:
- other: 另一条直线
- epsilon: 误差
**戻り値**:
- 是否近似平行
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
判断两条直线是否平行。
**引数**:
- other: 另一条直线
**戻り値**:
- 是否平行
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
判断两条直线是否共线。
**引数**:
- other: 另一条直线
**戻り値**:
- 是否共线
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
判断点是否在直线上。
**引数**:
- point: 点
**戻り値**:
- 是否在直线上
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**引数**:
- other: 另一条直线
**戻り値**:
- 是否共面
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <i>ソースコード</i> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
工厂函数 由两点构造直线。
**引数**:
- p1: 点1
- p2: 点2
**戻り値**:
- 直线
<details>
<summary> <i>ソースコード</i> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**引数**:
- other: 另一条直线
**戻り値**:
- 交点
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -0,0 +1,63 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **タイプ**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **タイプ**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **タイプ**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **タイプ**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **タイプ**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **タイプ**: `TypeAlias`

View File

@ -0,0 +1,592 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
平面方程ax + by + cz + d = 0
**引数**:
- a: x系数
- b: y系数
- c: z系数
- d: 常数项
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
判断两个平面是否近似相等。
**引数**:
- other: 另一个平面
**戻り値**:
- 是否近似相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
计算平面与平面之间的夹角。
**引数**:
- other: 另一个平面
**戻り値**:
- 夹角弧度
**例外**:
- TypeError 不支持的类型
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
计算平面与平面或点之间的距离。
**引数**:
- other: 另一个平面或点
**戻り値**:
- 距离
**例外**:
- TypeError 不支持的类型
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
计算两平面的交线。
**引数**:
- other: 另一个平面
**戻り値**:
- 两平面的交线
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
计算平面与直线的交点。
**引数**:
- other: 不与平面平行或在平面上的直线
**戻り値**:
- 交点
**例外**:
- ValueError 平面与直线平行或重合
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
计算平行于该平面且过指定点的平面。
**引数**:
- point: 指定点
**戻り値**:
- 所求平面
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
判断两个平面是否平行。
**引数**:
- other: 另一个平面
**戻り値**:
- 是否平行
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
平面的法向量。
**戻り値**:
- 法向量
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
工厂函数 由点和法向量构造平面(点法式构造)。
**引数**:
- point: 平面上的一点
- normal: 法向量
**戻り値**:
- 平面
<details>
<summary> <i>ソースコード</i> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
工厂函数 由三点构造平面。
**引数**:
- p1: 点1
- p2: 点2
- p3: 点3
**戻り値**:
- 平面
<details>
<summary> <i>ソースコード</i> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
工厂函数 由两直线构造平面。
**引数**:
- l1: 直线1
- l2: 直线2
**戻り値**:
- 平面
<details>
<summary> <i>ソースコード</i> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
工厂函数 由点和直线构造平面。
**引数**:
- point: 面上一点
- line: 面上直线,不包含点
**戻り値**:
- 平面
<details>
<summary> <i>ソースコード</i> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
取两平面的交集(人话:交线)
**引数**:
- other:
**戻り値**:
- 不平行平面的交线平面平行返回None
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -0,0 +1,186 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
笛卡尔坐标系中的点。
**引数**:
- x: x 坐标
- y: y 坐标
- z: z 坐标
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
判断两个点是否近似相等。
**引数**:
- other:
- epsilon:
**戻り値**:
- 是否近似相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
P + V -> P
P + P -> P
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
判断两个点是否相等。
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -0,0 +1,34 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -0,0 +1,218 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
区间限定函数
**引数**:
- x: 待限定的值
- min_: 最小值
- max_: 最大值
**戻り値**:
- 限制后的值
<details>
<summary> <i>ソースコード</i> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**引数**:
- x: 数1
- y: 数2
- epsilon: 误差
**戻り値**:
- 是否近似相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
获取数的符号。
**引数**:
- x: 数
- only_neg: 是否只返回负数的符号
**戻り値**:
- 符号 + - ""
<details>
<summary> <i>ソースコード</i> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**引数**:
- x: 数
- only_neg: 是否只返回负数的符号
**戻り値**:
- 符号 + - ""
<details>
<summary> <i>ソースコード</i> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -0,0 +1,690 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
3维向量
**引数**:
- x: x轴分量
- y: y轴分量
- z: z轴分量
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似相等。
**引数**:
- other:
- epsilon:
**戻り値**:
- 是否近似相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
计算两个向量之间的夹角。
**引数**:
- other: 另一个向量
**戻り値**:
- 夹角
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**引数**:
- other:
**戻り値**:
- 行列式的结果
<details>
<summary> <i>ソースコード</i> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似平行。
**引数**:
- other: 另一个向量
- epsilon: 允许的误差
**戻り値**:
- 是否近似平行
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
判断两个向量是否平行。
**引数**:
- other: 另一个向量
**戻り値**:
- 是否平行
<details>
<summary> <i>ソースコード</i> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
将向量归一化。
自体归一化,不返回值。
<details>
<summary> <i>ソースコード</i> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
向量的模。
**戻り値**:
- 模
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
获取该向量的单位向量。
**戻り値**:
- 单位向量
<details>
<summary> <i>ソースコード</i> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
V + P -> P
V + V -> V
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
判断两个向量是否相等。
**引数**:
- other:
**戻り値**:
- 是否相等
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
V - P -> P
V - V -> V
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
P - V -> P
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
数组运算 非点乘。点乘使用@叉乘使用cross。
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
点乘。
**引数**:
- other:
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <i>ソースコード</i> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **タイプ**: `Vector3`
- **説明**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **タイプ**: `Vector3`
- **説明**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **タイプ**: `Vector3`
- **説明**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **タイプ**: `Vector3`
- **説明**: z轴单位向量

View File

@ -0,0 +1,3 @@
---
title: mbcp.particle
---

View File

@ -0,0 +1,3 @@
---
title: mbcp.presets
---

View File

@ -0,0 +1,47 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
生成球体上的点集。
**引数**:
- radius:
- density:
**戻り値**:
- List[Point3]: 球体上的点集。
<details>
<summary> <i>ソースコード</i> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>

3
docs/zht/api/index.md Normal file
View File

@ -0,0 +1,3 @@
---
title: mbcp
---

View File

@ -0,0 +1,423 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
任意角度。
**變數説明**:
- value: 角度或弧度值
- is_radian: 是否为弧度,默认为否
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
余角两角的和为90°。
**返回**:
- 余角
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
补角两角的和为180°。
**返回**:
- 补角
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
角度。
**返回**:
- 弧度
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
最小正角。
**返回**:
- 最小正角度
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
最大负角。
**返回**:
- 最大负角度
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
正弦值。
**返回**:
- 正弦值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
余弦值。
**返回**:
- 余弦值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
正切值。
**返回**:
- 正切值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
余切值。
**返回**:
- 余切值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
正割值。
**返回**:
- 正割值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
余割值。
**返回**:
- 余割值
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <i>源碼</i> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <i>源碼</i> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <i>源碼</i> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <i>源碼</i> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math.const
---

View File

@ -0,0 +1,162 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
求N元函数一阶偏导函数。这玩意不太稳定慎用。
**變數説明**:
- func: 函数
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
- epsilon: 偏移量
**返回**:
- 偏导函数
**抛出**:
- ValueError 无效变量类型
<details>
<summary> <i>源碼</i> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <i>源碼</i> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <i>源碼</i> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
曲线方程。
**變數説明**:
- x_func: x函数
- y_func: y函数
- z_func: z函数
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
计算曲线上的点。
**變數説明**:
- *t:
- 参数:
<details>
<summary> <i>源碼</i> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -0,0 +1,3 @@
---
title: mbcp.mp_math
---

View File

@ -0,0 +1,581 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
三维空间中的直线。由一个点和一个方向向量确定。
**變數説明**:
- point: 直线上的一点
- direction: 直线的方向向量
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
判断两条直线是否近似相等。
**變數説明**:
- other: 另一条直线
- epsilon: 误差
**返回**:
- 是否近似相等
<details>
<summary> <i>源碼</i> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
计算直线和直线之间的夹角。
**變數説明**:
- other: 另一条直线
**返回**:
- 夹角弧度
**抛出**:
- TypeError 不支持的类型
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
计算直线和直线或点之间的距离。
**變數説明**:
- other: 平行直线或点
**返回**:
- 距离
**抛出**:
- TypeError 不支持的类型
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
计算两条直线的交点。
**變數説明**:
- other: 另一条直线
**返回**:
- 交点
**抛出**:
- ValueError 直线平行
- ValueError 直线不共面
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
计算直线经过指定点p的垂线。
**變數説明**:
- point: 指定点
**返回**:
- 垂线
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**變數説明**:
- t: 参数t
**返回**:
- 点
<details>
<summary> <i>源碼</i> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
获取直线的参数方程。
**返回**:
- x(t), y(t), z(t)
<details>
<summary> <i>源碼</i> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
判断两条直线是否近似平行。
**變數説明**:
- other: 另一条直线
- epsilon: 误差
**返回**:
- 是否近似平行
<details>
<summary> <i>源碼</i> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
判断两条直线是否平行。
**變數説明**:
- other: 另一条直线
**返回**:
- 是否平行
<details>
<summary> <i>源碼</i> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
判断两条直线是否共线。
**變數説明**:
- other: 另一条直线
**返回**:
- 是否共线
<details>
<summary> <i>源碼</i> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
判断点是否在直线上。
**變數説明**:
- point: 点
**返回**:
- 是否在直线上
<details>
<summary> <i>源碼</i> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**變數説明**:
- other: 另一条直线
**返回**:
- 是否共面
<details>
<summary> <i>源碼</i> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <i>源碼</i> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
工厂函数 由两点构造直线。
**變數説明**:
- p1: 点1
- p2: 点2
**返回**:
- 直线
<details>
<summary> <i>源碼</i> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**變數説明**:
- other: 另一条直线
**返回**:
- 交点
<details>
<summary> <i>源碼</i> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -0,0 +1,63 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **類型**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **類型**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **類型**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **類型**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **類型**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **類型**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **類型**: `TypeAlias`

View File

@ -0,0 +1,592 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
平面方程ax + by + cz + d = 0
**變數説明**:
- a: x系数
- b: y系数
- c: z系数
- d: 常数项
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
判断两个平面是否近似相等。
**變數説明**:
- other: 另一个平面
**返回**:
- 是否近似相等
<details>
<summary> <i>源碼</i> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
计算平面与平面之间的夹角。
**變數説明**:
- other: 另一个平面
**返回**:
- 夹角弧度
**抛出**:
- TypeError 不支持的类型
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
计算平面与平面或点之间的距离。
**變數説明**:
- other: 另一个平面或点
**返回**:
- 距离
**抛出**:
- TypeError 不支持的类型
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
计算两平面的交线。
**變數説明**:
- other: 另一个平面
**返回**:
- 两平面的交线
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
计算平面与直线的交点。
**變數説明**:
- other: 不与平面平行或在平面上的直线
**返回**:
- 交点
**抛出**:
- ValueError 平面与直线平行或重合
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
计算平行于该平面且过指定点的平面。
**變數説明**:
- point: 指定点
**返回**:
- 所求平面
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
判断两个平面是否平行。
**變數説明**:
- other: 另一个平面
**返回**:
- 是否平行
<details>
<summary> <i>源碼</i> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
平面的法向量。
**返回**:
- 法向量
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
工厂函数 由点和法向量构造平面(点法式构造)。
**變數説明**:
- point: 平面上的一点
- normal: 法向量
**返回**:
- 平面
<details>
<summary> <i>源碼</i> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
工厂函数 由三点构造平面。
**變數説明**:
- p1: 点1
- p2: 点2
- p3: 点3
**返回**:
- 平面
<details>
<summary> <i>源碼</i> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
工厂函数 由两直线构造平面。
**變數説明**:
- l1: 直线1
- l2: 直线2
**返回**:
- 平面
<details>
<summary> <i>源碼</i> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
工厂函数 由点和直线构造平面。
**變數説明**:
- point: 面上一点
- line: 面上直线,不包含点
**返回**:
- 平面
<details>
<summary> <i>源碼</i> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
取两平面的交集(人话:交线)
**變數説明**:
- other:
**返回**:
- 不平行平面的交线平面平行返回None
<details>
<summary> <i>源碼</i> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <i>源碼</i> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -0,0 +1,186 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
笛卡尔坐标系中的点。
**變數説明**:
- x: x 坐标
- y: y 坐标
- z: z 坐标
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
判断两个点是否近似相等。
**變數説明**:
- other:
- epsilon:
**返回**:
- 是否近似相等
<details>
<summary> <i>源碼</i> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
P + V -> P
P + P -> P
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
判断两个点是否相等。
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -0,0 +1,34 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -0,0 +1,218 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
区间限定函数
**變數説明**:
- x: 待限定的值
- min_: 最小值
- max_: 最大值
**返回**:
- 限制后的值
<details>
<summary> <i>源碼</i> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**變數説明**:
- x: 数1
- y: 数2
- epsilon: 误差
**返回**:
- 是否近似相等
<details>
<summary> <i>源碼</i> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
获取数的符号。
**變數説明**:
- x: 数
- only_neg: 是否只返回负数的符号
**返回**:
- 符号 + - ""
<details>
<summary> <i>源碼</i> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**變數説明**:
- x: 数
- only_neg: 是否只返回负数的符号
**返回**:
- 符号 + - ""
<details>
<summary> <i>源碼</i> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <i>源碼</i> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <i>源碼</i> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -0,0 +1,690 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
3维向量
**變數説明**:
- x: x轴分量
- y: y轴分量
- z: z轴分量
<details>
<summary> <i>源碼</i> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似相等。
**變數説明**:
- other:
- epsilon:
**返回**:
- 是否近似相等
<details>
<summary> <i>源碼</i> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
计算两个向量之间的夹角。
**變數説明**:
- other: 另一个向量
**返回**:
- 夹角
<details>
<summary> <i>源碼</i> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**變數説明**:
- other:
**返回**:
- 行列式的结果
<details>
<summary> <i>源碼</i> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
判断两个向量是否近似平行。
**變數説明**:
- other: 另一个向量
- epsilon: 允许的误差
**返回**:
- 是否近似平行
<details>
<summary> <i>源碼</i> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
判断两个向量是否平行。
**變數説明**:
- other: 另一个向量
**返回**:
- 是否平行
<details>
<summary> <i>源碼</i> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
将向量归一化。
自体归一化,不返回值。
<details>
<summary> <i>源碼</i> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
向量的模。
**返回**:
- 模
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
获取该向量的单位向量。
**返回**:
- 单位向量
<details>
<summary> <i>源碼</i> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <i>源碼</i> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
V + P -> P
V + V -> V
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
判断两个向量是否相等。
**變數説明**:
- other:
**返回**:
- 是否相等
<details>
<summary> <i>源碼</i> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <i>源碼</i> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
V - P -> P
V - V -> V
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
P - V -> P
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
数组运算 非点乘。点乘使用@叉乘使用cross。
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
点乘。
**變數説明**:
- other:
<details>
<summary> <i>源碼</i> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <i>源碼</i> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <i>源碼</i> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **類型**: `Vector3`
- **説明**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **類型**: `Vector3`
- **説明**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **類型**: `Vector3`
- **説明**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **類型**: `Vector3`
- **説明**: z轴单位向量

View File

@ -0,0 +1,3 @@
---
title: mbcp.particle
---

View File

@ -0,0 +1,3 @@
---
title: mbcp.presets
---

View File

@ -0,0 +1,47 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
生成球体上的点集。
**變數説明**:
- radius:
- density:
**返回**:
- List[Point3]: 球体上的点集。
<details>
<summary> <i>源碼</i> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>

View File

@ -18,7 +18,7 @@ import argparse
import os
import sys
from liteyuki_autodoc.output import generate_from_module
from litedoc.output import generate_from_module
def main():

View File

@ -12,7 +12,7 @@ from typing import Optional
from pydantic import BaseModel, Field
from liteyuki_autodoc.i18n import get_text
from litedoc.i18n import get_text
class Attr(BaseModel):
@ -126,24 +126,24 @@ class Docstring(BaseModel):
# print(self.reduction())
# print(self.desc, self.return_)
if self.args:
ret += PREFIX + f"{get_text(lang, 'docstring.args')}:\n\n"
ret += PREFIX + f"**{get_text(lang, 'docstring.args')}**:\n\n"
for arg in self.args:
ret += PREFIX + f"- {arg.name}: {arg.type} {arg.desc}\n\n"
if self.attrs:
ret += PREFIX + f"{get_text(lang, 'docstring.attrs')}:\n\n"
ret += PREFIX + f"**{get_text(lang, 'docstring.attrs')}**:\n\n"
for attr in self.attrs:
ret += PREFIX + f"- {attr.name}: {attr.type} {attr.desc}\n\n"
if self.return_ is not None:
ret += PREFIX + f"{get_text(lang, 'docstring.return')}:\n\n"
ret += PREFIX + f"**{get_text(lang, 'docstring.return')}**:\n\n"
ret += PREFIX + f"- {self.return_.desc}\n\n"
if self.raise_:
ret += PREFIX + f"{get_text(lang, 'docstring.raises')}:\n\n"
ret += PREFIX + f"**{get_text(lang, 'docstring.raises')}**:\n\n"
for exception in self.raise_:
ret += PREFIX + f"- {exception.name} {exception.desc}\n\n"
if self.example:
ret += PREFIX + f"{get_text(lang, 'docstring.example')}:\n\n"
ret += PREFIX + f"**{get_text(lang, 'docstring.example')}**:\n\n"
for example in self.example:
ret += PREFIX + f"- {example.desc}\n Input: {example.input}\n Output: {example.output}\n\n"
ret += PREFIX + f"- {example.desc}\n **{get_text(lang, 'docs.input')}**: {example.input}\n **{get_text(lang, 'docs.output')}**: {example.output}\n\n"
return ret
def __str__(self):

View File

@ -3,7 +3,7 @@ Google docstring parser for Python.
"""
from typing import Optional
from liteyuki_autodoc.docstring.docstring import Docstring
from litedoc.docstring.docstring import Docstring
class Parser:
@ -52,10 +52,30 @@ class GoogleDocstringParser(Parser):
self.docstring = Docstring()
def read_line(self, move: bool = True) -> str:
"""
每次读取一行
Args:
move: 是否移动指针
Returns:
"""
if self.lineno >= len(self.lines):
return ""
line = self.lines[self.lineno]
if move:
self.lineno += 1
return line
def match_token(self) -> Optional[str]:
"""
解析下一行的token
Returns:
"""
for token in self._tokens:
if self.lines[self.lineno][self.char:].startswith(token):
self.char += len(token)
line = self.read_line(move=False)
if line.strip().startswith(token):
self.lineno += 1
return self._tokens[token]
return None
@ -115,17 +135,12 @@ class GoogleDocstringParser(Parser):
在一个子解析器中解析下一行直到缩进小于等于当前行的缩进
Returns:
"""
while (self.lineno + 1) < len(self.lines):
line = self.lines[self.lineno + 1]
if line.startswith(" " * self.indent):
line = line[self.indent:]
self.lineno += 1
return line
else:
self.lineno += 1
return None
self.lineno += 1
return None
line = self.read_line(move=False)
if line.startswith(" " * self.indent):
self.lineno += 1
return line[self.indent:]
else:
return None
def parse(self) -> Docstring:
"""

View File

@ -9,7 +9,7 @@ NestedDict: TypeAlias = dict[str, 'str | NestedDict']
i18n_dict: dict[str, NestedDict] = {
"en" : {
"docstring": {
"args" : "Args",
"args" : "Arguments",
"return" : "Return",
"attribute": "Attribute",
"raises" : "Raises",
@ -17,6 +17,8 @@ i18n_dict: dict[str, NestedDict] = {
"yields" : "Yields",
},
"src": "Source code",
"desc": "Description",
"type": "Type",
},
"zh-Hans": {
"docstring": {
@ -27,18 +29,22 @@ i18n_dict: dict[str, NestedDict] = {
"example" : "示例",
"yields" : "产出",
},
"src": "源码",
"src": "源代码",
"desc": "说明",
"type": "类型",
},
"zh-Hant": {
"docstring": {
"args" : "參數",
"args" : "變數説明",
"return" : "返回",
"attribute": "屬性",
"raises" : "引發",
"example" : "",
"raises" : "抛出",
"example" : "",
"yields" : "產出",
},
"src": "源碼",
"desc": "説明",
"type": "類型",
},
"ja" : {
"docstring": {
@ -50,6 +56,8 @@ i18n_dict: dict[str, NestedDict] = {
"yields" : "生成",
},
"src": "ソースコード",
"desc": "説明",
"type": "タイプ",
},
}

View File

@ -10,8 +10,8 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
"""
import os.path
from liteyuki_autodoc.style.markdown import generate
from liteyuki_autodoc.syntax.astparser import AstParser
from litedoc.style.markdown import generate
from litedoc.syntax.astparser import AstParser
def write_to_file(content: str, output: str) -> None:

View File

@ -10,9 +10,9 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
"""
from typing import Optional
from liteyuki_autodoc.syntax.astparser import AstParser
from liteyuki_autodoc.syntax.node import *
from liteyuki_autodoc.i18n import get_text
from litedoc.syntax.astparser import AstParser
from litedoc.syntax.node import *
from litedoc.i18n import get_text
def generate(parser: AstParser, lang: str, frontmatter: Optional[dict] = None) -> str:
@ -36,24 +36,24 @@ def generate(parser: AstParser, lang: str, frontmatter: Optional[dict] = None) -
# var > func > class
"""遍历函数"""
for func in parser.functions:
if func.name.startswith("_"):
continue
md += func.markdown(lang)
"""遍历类"""
for cls in parser.classes:
md += f"### ***class*** `{cls.name}`\n\n"
for mtd in cls.methods:
md += mtd.markdown(lang, 2, True)
for attr in cls.attrs:
if attr.type == TypeHint.NO_TYPEHINT:
md += f"#### ***attr*** `{attr.name} = {attr.value}`\n\n"
else:
md += f"#### ***attr*** `{attr.name}: {attr.type} = {attr.value}`\n\n"
md += cls.markdown(lang)
"""遍历变量"""
for var in parser.variables:
if var.type == TypeHint.NO_TYPEHINT:
md += f"### ***var*** `{var.name} = {var.value}`\n\n"
else:
md += f"### ***var*** `{var.name}: {var.type} = {var.value}`\n\n"
md += f"### ***var*** `{var.name} = {var.value}`\n\n"
if var.type != TypeHint.NO_TYPEHINT:
md += f"- **{get_text(lang, 'type')}**: `{var.type}`\n\n"
if var.docs is not None:
md += f"- **{get_text(lang, 'desc')}**: {var.docs}\n\n"
return md

View File

@ -9,11 +9,11 @@ Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Software: PyCharm
"""
import ast
import inspect
from .node import *
from ..docstring.parser import parse
class AstParser:
def __init__(self, code: str):
self.code = code
@ -25,6 +25,51 @@ class AstParser:
self.parse()
@staticmethod
def clear_quotes(s: str) -> str:
"""
去除类型注解中的引号
Args:
s:
Returns:
"""
return s.replace("'", "").replace('"', "")
def get_line_content(self, lineno: int, ignore_index_out: bool = True) -> str:
"""获取代码行内容
Args:
lineno: 行号
ignore_index_out: 是否忽略索引越界
Returns:
代码行内容
"""
if ignore_index_out:
if lineno < 1 or lineno > len(self.code.split("\n")):
return ""
return self.code.split("\n")[lineno - 1]
@staticmethod
def match_line_docs(linecontent: str) -> str:
"""匹配行内注释
Args:
linecontent: 行内容
Returns:
文档字符串
"""
in_string = False
string_char = ''
for i, char in enumerate(linecontent):
if char in ('"', "'"):
if in_string:
if char == string_char:
in_string = False
else:
in_string = True
string_char = char
elif char == '#' and not in_string:
return linecontent[i + 1:].strip()
return ""
def parse(self):
for node in ast.walk(self.tree):
if isinstance(node, ast.ClassDef):
@ -47,21 +92,21 @@ class AstParser:
posonlyargs=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg in sub_node.args.posonlyargs
],
args=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg in sub_node.args.args
],
kwonlyargs=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg in sub_node.args.kwonlyargs
],
@ -77,26 +122,27 @@ class AstParser:
)
for default in sub_node.args.defaults
],
return_=ast.unparse(sub_node.returns).strip() if sub_node.returns else TypeHint.NO_RETURN,
return_=self.clear_quotes(ast.unparse(sub_node.returns).strip()) if sub_node.returns else TypeHint.NO_RETURN,
decorators=[ast.unparse(decorator).strip() for decorator in sub_node.decorator_list],
is_async=isinstance(sub_node, ast.AsyncFunctionDef),
src=ast.unparse(sub_node).strip()
src=ast.unparse(sub_node).strip(),
is_classmethod=True
))
elif isinstance(sub_node, (ast.Assign, ast.AnnAssign)):
if isinstance(sub_node, ast.Assign):
class_node.attrs.append(AttrNode(
name=sub_node.targets[0].id, # type: ignore
type=TypeHint.NO_TYPEHINT,
value=ast.unparse(sub_node.value).strip()
))
elif isinstance(sub_node, ast.AnnAssign):
class_node.attrs.append(AttrNode(
name=sub_node.target.id,
type=ast.unparse(sub_node.annotation).strip(),
value=ast.unparse(sub_node.value).strip() if sub_node.value else TypeHint.NO_DEFAULT
))
else:
raise ValueError(f"Unsupported node type: {type(sub_node)}")
# elif isinstance(sub_node, (ast.Assign, ast.AnnAssign)):
# if isinstance(sub_node, ast.Assign):
# class_node.attrs.append(AttrNode(
# name=sub_node.targets[0].id, # type: ignore
# type=TypeHint.NO_TYPEHINT,
# value=ast.unparse(sub_node.value).strip()
# ))
# elif isinstance(sub_node, ast.AnnAssign):
# class_node.attrs.append(AttrNode(
# name=sub_node.target.id,
# type=ast.unparse(sub_node.annotation).strip(),
# value=ast.unparse(sub_node.value).strip() if sub_node.value else TypeHint.NO_DEFAULT
# ))
# else:
# raise ValueError(f"Unsupported node type: {type(sub_node)}")
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
# 仅打印模块级别的函数
@ -109,21 +155,21 @@ class AstParser:
posonlyargs=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg in node.args.posonlyargs
],
args=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg, default in zip(node.args.args, node.args.defaults)
],
kwonlyargs=[
ArgNode(
name=arg.arg,
type=ast.unparse(arg.annotation).strip() if arg.annotation else TypeHint.NO_TYPEHINT,
type=self.clear_quotes(ast.unparse(arg.annotation).strip()) if arg.annotation else TypeHint.NO_TYPEHINT,
)
for arg in node.args.kwonlyargs
],
@ -139,7 +185,7 @@ class AstParser:
)
for default in node.args.defaults
],
return_=ast.unparse(node.returns).strip() if node.returns else TypeHint.NO_RETURN,
return_=self.clear_quotes(ast.unparse(node.returns).strip()) if node.returns else TypeHint.NO_RETURN,
decorators=[ast.unparse(decorator).strip() for decorator in node.decorator_list],
is_async=isinstance(node, ast.AsyncFunctionDef),
src=ast.unparse(node).strip()
@ -147,23 +193,40 @@ class AstParser:
elif isinstance(node, (ast.Assign, ast.AnnAssign)):
if not self._is_module_level_variable2(node):
# print("变量不在模块级别", ast.unparse(node))
continue
else:
pass
if isinstance(node, ast.Assign):
for target in node.targets:
if isinstance(target, ast.Name):
self.variables.append(AssignNode(
name=target.id,
value=ast.unparse(node.value).strip(),
type=ast.unparse(node.annotation).strip() if isinstance(node, ast.AnnAssign) else TypeHint.NO_TYPEHINT
))
elif isinstance(node, ast.AnnAssign):
lineno = node.lineno
prev_line = self.get_line_content(lineno - 1).strip()
curr_line = self.get_line_content(lineno).strip()
next_line = self.get_line_content(lineno + 1).strip()
# 获取文档字符串,优先检测下行"""
if next_line.startswith('"""'):
docs = next_line[3:-3]
elif prev_line.startswith('"""'):
docs = prev_line[3:-3]
else:
curr_docs = self.match_line_docs(curr_line)
if curr_docs:
docs = curr_docs
else:
docs = None
# if isinstance(node, ast.Assign):
# for target in node.targets:
# if isinstance(target, ast.Name):
# self.variables.append(AssignNode(
# name=target.id,
# value=ast.unparse(node.value).strip(),
# type=ast.unparse(node.annotation).strip() if isinstance(node, ast.AnnAssign) else TypeHint.NO_TYPEHINT
# ))
if isinstance(node, ast.AnnAssign):
self.variables.append(AssignNode(
name=node.target.id,
value=ast.unparse(node.value).strip() if node.value else TypeHint.NO_DEFAULT,
type=ast.unparse(node.annotation).strip()
type=ast.unparse(node.annotation).strip(),
docs=docs
))
def _is_module_level_function(self, node: ast.FunctionDef | ast.AsyncFunctionDef):

View File

@ -13,8 +13,8 @@ from enum import Enum
from pydantic import BaseModel, Field
from liteyuki_autodoc.docstring.docstring import Docstring
from liteyuki_autodoc.i18n import get_text
from litedoc.docstring.docstring import Docstring
from litedoc.i18n import get_text
class TypeHint:
@ -37,6 +37,7 @@ class AssignNode(BaseModel):
name: str
type: str = ""
value: str
docs: Optional[str] = ""
class ArgNode(BaseModel):
@ -123,6 +124,22 @@ class FunctionNode(BaseModel):
decorators: list[str] = []
src: str
is_async: bool = False
is_classmethod: bool = False
magic_methods: dict[str, str] = {
"__add__" : "+",
"__radd__" : "+",
"__sub__" : "-",
"__rsub__" : "-",
"__mul__" : "*",
"__rmul__" : "*",
"__matmul__" : "@",
"__rmatmul__": "@",
"__mod__" : "%",
"__truediv__": "/",
"__rtruediv__": "/",
"__neg__" : "-",
} # 魔术方法, 例如运算符
def is_private(self):
"""
@ -140,12 +157,11 @@ class FunctionNode(BaseModel):
"""
return self.name.startswith("__") and self.name.endswith("__")
def markdown(self, lang: str, indent: int = 0, is_classmethod: bool = False) -> str:
def markdown(self, lang: str, indent: int = 0) -> str:
"""
Args:
indent: int
The number of spaces to indent the markdown.
is_classmethod: bool
lang: str
The language of the
Returns:
@ -155,21 +171,20 @@ class FunctionNode(BaseModel):
PREFIX = "" * indent
# if is_classmethod:
# PREFIX = "- #"
func_type = "func" if not self.is_classmethod else "method"
md = ""
# 装饰器部分
if len(self.decorators) > 0:
for decorator in self.decorators:
md += PREFIX + f"### `@{decorator}`\n"
if self.is_async:
md += PREFIX + "### *async def* "
md += PREFIX + f"### *async {func_type}* "
else:
md += PREFIX + "### *def* "
md += f"`{self.name}(" # code start
md += PREFIX + f"### *{func_type}* "
# code start
# 配对位置参数和位置参数默认值无默认值用TypeHint.NO_DEFAULT
args: list[str] = [] # 可直接", ".join(args)得到位置参数部分
arg_i = 0
@ -204,25 +219,33 @@ class FunctionNode(BaseModel):
arg_text = f"{arg.name}"
if arg.type != TypeHint.NO_TYPEHINT:
arg_text += f": {arg.type}"
if kw_default.value != TypeHint.NO_DEFAULT:
arg_text += f" = {kw_default.value}"
args.append(arg_text)
md += ", ".join(args) + ")"
if self.return_ != TypeHint.NO_RETURN:
md += f" -> {self.return_}"
"""魔法方法"""
if self.name in self.magic_methods:
if len(args) == 2:
md += f"`{args[0]} {self.magic_methods[self.name]} {args[1]}"
elif len(args) == 1:
md += f"`{self.magic_methods[self.name]} {args[0]}"
if self.return_ != TypeHint.NO_RETURN:
md += f" => {self.return_}"
else:
md += f"`{self.name}(" # code start
md += ", ".join(args) + ")"
if self.return_ != TypeHint.NO_RETURN:
md += f" -> {self.return_}"
md += "`\n\n" # code end
"""此处预留docstring"""
if self.docs is not None:
md += f"\n{self.docs.markdown(lang, indent, is_classmethod)}\n"
md += f"\n{self.docs.markdown(lang, indent)}\n"
else:
pass
# 源码展示
md += PREFIX + f"\n<details>\n<summary>{get_text(lang, 'src')}</summary>\n\n```python\n{self.src}\n```\n</details>\n\n"
md += PREFIX + f"\n<details>\n<summary> <i>{get_text(lang, 'src')}</i> </summary>\n\n```python\n{self.src}\n```\n</details>\n\n"
return md
@ -251,11 +274,41 @@ class ClassNode(BaseModel):
The attributes of the class.
methods: list[MethodNode] = []
The methods of the class.
inherit: list["ClassNode"] = []
inherits: list["ClassNode"] = []
The classes that the class inherits from
"""
name: str
docs: Optional[Docstring] = None
attrs: list[AttrNode] = []
methods: list[FunctionNode] = []
inherit: list["ClassNode"] = []
inherits: list[str] = []
def markdown(self, lang: str) -> str:
"""
返回类的markdown文档
Args:
lang: str
The language of the
Returns:
markdown style document
"""
hidden_methods = [
"__str__",
"__repr__",
]
md = ""
md += f"### **class** `{self.name}"
if len(self.inherits) > 0:
md += f"({', '.join([cls for cls in self.inherits])})"
md += "`\n"
for method in self.methods:
if method.name in hidden_methods:
continue
md += method.markdown(lang, 2)
for attr in self.attrs:
if attr.type == TypeHint.NO_TYPEHINT:
md += f"#### ***attr*** `{attr.name} = {attr.value}`\n\n"
else:
md += f"#### ***attr*** `{attr.name}: {attr.type} = {attr.value}`\n\n"
return md

47
litedoc/translator.py Normal file
View File

@ -0,0 +1,47 @@
# -*- coding: utf-8 -*-
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/29 下午12:02
@Author : snowykami
@Email : snowykami@outlook.com
@File : translator.py
@Software: PyCharm
"""
from typing import Optional
from translate import Translator # type: ignore
# 特殊映射语言
i18n_lang2googletrans_lang = {
"zh-Hans": "zh-cn",
"zh-Hant": "zh-tw",
"en" : "en",
}
def get_google_lang(lang: str) -> str:
"""
Get google translate language
Args:
lang: language
Returns:
google translate language
"""
return i18n_lang2googletrans_lang.get(lang, lang)
def translate(text: str, lang: str, source_lang: str) -> str:
"""
Translate text to target language
Args:
source_lang:
text: text
lang: target language
Returns:
translated text
"""
if lang == source_lang:
return text
google_lang = get_google_lang(lang)
return Translator(to_lang=google_lang, from_lang=source_lang).translate(text)

View File

@ -22,10 +22,10 @@ class Plane3:
"""
平面方程ax + by + cz + d = 0
Args:
a:
b:
c:
d:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
@ -36,13 +36,10 @@ class Plane3:
"""
判断两个平面是否近似相等
Args:
other:
other: 另一个平面
Returns:
是否近似相等
"""
a = 3 # 测试变量
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
@ -91,11 +88,11 @@ class Plane3:
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线该方法有问题待修复
计算两平面的交线
Args:
other: 另一个平面
Returns:
交线
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
@ -105,6 +102,7 @@ class Plane3:
x, y, z = 0, 0, 0
# 依次判断条件假设x=0, y=0, z=0找到合适的点
# 先假设其中一个系数不为0则令此坐标为0构建增广矩阵解出另外两个坐标
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
@ -146,7 +144,7 @@ class Plane3:
Args:
point: 指定点
Returns:
平面
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)

View File

@ -22,11 +22,11 @@ if TYPE_CHECKING:
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间截断函数
区间限定函数
Args:
x:
min_:
max_:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
@ -40,7 +40,6 @@ class Approx:
已实现对象 实数 Vector3 Point3 Plane3 Line3
"""
def __init__(self, value: RealNumber):
self.value = value
@ -67,10 +66,9 @@ def approx(x: float, y: float = 0.0, epsilon: float = APPROX) -> bool:
"""
判断两个数是否近似相等或包装一个实数用于判断是否近似于0
Args:
x:
y:
epsilon:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""

View File

@ -263,11 +263,11 @@ class Vector3:
return f"Vector3({self.x}, {self.y}, {self.z})"
zero_vector3 = Vector3(0, 0, 0)
zero_vector3: Vector3 = Vector3(0, 0, 0)
"""零向量"""
x_axis = Vector3(1, 0, 0)
x_axis: Vector3 = Vector3(1, 0, 0)
"""x轴单位向量"""
y_axis = Vector3(0, 1, 0)
y_axis: Vector3 = Vector3(0, 1, 0)
"""y轴单位向量"""
z_axis = Vector3(0, 0, 1)
z_axis: Vector3 = Vector3(0, 0, 1)
"""z轴单位向量"""

4
mkdoc.bat Normal file
View File

@ -0,0 +1,4 @@
python -m litedoc mbcp -o docs/api -l zh-Hans
python -m litedoc mbcp -o docs/en/api -l en
python -m litedoc mbcp -o docs/ja/api -l ja
python -m litedoc mbcp -o docs/zht/api -l zh-Hant

View File

@ -21,3 +21,8 @@ build-backend = "pdm.backend"
[tool.pdm]
distribution = true
[tool.pdm.dev-dependencies]
dev = [
"translate>=3.6.1",
]

View File

@ -0,0 +1,16 @@
# -*- coding: utf-8 -*-
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/29 下午12:06
@Author : snowykami
@Email : snowykami@outlook.com
@File : test_doc_translator.py
@Software: PyCharm
"""
from litedoc.translator import translate
def test():
print(translate("Hello, world!", "Chinese", "English"))