mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-27 04:25:06 +08:00
184 lines
6.9 KiB
Rust
184 lines
6.9 KiB
Rust
use std::borrow::Cow;
|
|
use std::collections::{HashMap, HashSet};
|
|
|
|
use fst::{IntoStreamer, Streamer};
|
|
use levenshtein_automata::DFA;
|
|
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
|
use log::debug;
|
|
use once_cell::sync::Lazy;
|
|
use roaring::bitmap::RoaringBitmap;
|
|
|
|
use crate::query_tokens::{QueryTokens, QueryToken};
|
|
use crate::mdfs::Mdfs;
|
|
use crate::{Index, DocumentId};
|
|
|
|
// Building these factories is not free.
|
|
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
|
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
|
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
|
|
|
pub struct Search<'a> {
|
|
query: Option<String>,
|
|
offset: usize,
|
|
limit: usize,
|
|
rtxn: &'a heed::RoTxn<'a>,
|
|
index: &'a Index,
|
|
}
|
|
|
|
impl<'a> Search<'a> {
|
|
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
|
Search { query: None, offset: 0, limit: 20, rtxn, index }
|
|
}
|
|
|
|
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
|
self.query = Some(query.into());
|
|
self
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
|
self.offset = offset;
|
|
self
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
|
self.limit = limit;
|
|
self
|
|
}
|
|
|
|
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
|
/// TODO introduce settings for the number of typos regarding the words lengths.
|
|
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
|
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
|
|
|
let words: Vec<_> = QueryTokens::new(query).collect();
|
|
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
|
let number_of_words = words.len();
|
|
|
|
words.into_iter().enumerate().map(|(i, word)| {
|
|
let (word, quoted) = match word {
|
|
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
|
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
|
};
|
|
let is_last = i + 1 == number_of_words;
|
|
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
|
let lev = match word.len() {
|
|
0..=4 => if quoted { lev0 } else { lev0 },
|
|
5..=8 => if quoted { lev0 } else { lev1 },
|
|
_ => if quoted { lev0 } else { lev2 },
|
|
};
|
|
|
|
let dfa = if is_prefix {
|
|
lev.build_prefix_dfa(&word)
|
|
} else {
|
|
lev.build_dfa(&word)
|
|
};
|
|
|
|
(word, is_prefix, dfa)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Fetch the words from the given FST related to the given DFAs along with
|
|
/// the associated documents ids.
|
|
fn fetch_words_docids(
|
|
&self,
|
|
fst: &fst::Set<Cow<[u8]>>,
|
|
dfas: Vec<(String, bool, DFA)>,
|
|
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
|
{
|
|
// A Vec storing all the derived words from the original query words, associated
|
|
// with the distance from the original word and the docids where the words appears.
|
|
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
|
|
|
for (_word, _is_prefix, dfa) in dfas {
|
|
|
|
let mut acc_derived_words = HashMap::new();
|
|
let mut unions_docids = RoaringBitmap::new();
|
|
let mut stream = fst.search_with_state(&dfa).into_stream();
|
|
while let Some((word, state)) = stream.next() {
|
|
|
|
let word = std::str::from_utf8(word)?;
|
|
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
|
let distance = dfa.distance(state);
|
|
unions_docids.union_with(&docids);
|
|
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
|
}
|
|
derived_words.push((acc_derived_words, unions_docids));
|
|
}
|
|
|
|
Ok(derived_words)
|
|
}
|
|
|
|
/// Returns the set of docids that contains all of the query words.
|
|
fn compute_candidates(
|
|
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
|
) -> RoaringBitmap
|
|
{
|
|
// We sort the derived words by inverse popularity, this way intersections are faster.
|
|
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
|
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
|
|
|
// we do a union between all the docids of each of the derived words,
|
|
// we got N unions (the number of original query words), we then intersect them.
|
|
let mut candidates = RoaringBitmap::new();
|
|
|
|
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
|
if i == 0 {
|
|
candidates = union_docids.clone();
|
|
} else {
|
|
candidates.intersect_with(&union_docids);
|
|
}
|
|
}
|
|
|
|
candidates
|
|
}
|
|
|
|
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
|
let limit = self.limit;
|
|
|
|
let fst = self.index.words_fst(self.rtxn)?;
|
|
|
|
// Construct the DFAs related to the query words.
|
|
let dfas = match self.query.as_deref().map(Self::generate_query_dfas) {
|
|
Some(dfas) if !dfas.is_empty() => dfas,
|
|
_ => {
|
|
// If the query is not set or results in no DFAs we return a placeholder.
|
|
let documents_ids = self.index.documents_ids(self.rtxn)?.iter().take(limit).collect();
|
|
return Ok(SearchResult { documents_ids, ..Default::default() })
|
|
},
|
|
};
|
|
|
|
let derived_words = self.fetch_words_docids(&fst, dfas)?;
|
|
let candidates = Self::compute_candidates(&derived_words);
|
|
|
|
debug!("candidates: {:?}", candidates);
|
|
|
|
// The mana depth first search is a revised DFS that explore
|
|
// solutions in the order of their proximities.
|
|
let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates);
|
|
let mut documents = Vec::new();
|
|
|
|
// We execute the Mdfs iterator until we find enough documents.
|
|
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
|
match mdfs.next().transpose()? {
|
|
Some((proximity, answer)) => {
|
|
debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
|
documents.push(answer);
|
|
},
|
|
None => break,
|
|
}
|
|
}
|
|
|
|
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
|
let documents_ids = documents.into_iter().flatten().take(limit).collect();
|
|
Ok(SearchResult { found_words, documents_ids })
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct SearchResult {
|
|
pub found_words: HashSet<String>,
|
|
// TODO those documents ids should be associated with their criteria scores.
|
|
pub documents_ids: Vec<DocumentId>,
|
|
}
|