use std::borrow::Cow; use std::collections::{HashMap, HashSet}; use fst::{IntoStreamer, Streamer}; use levenshtein_automata::DFA; use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder; use log::debug; use once_cell::sync::Lazy; use roaring::bitmap::RoaringBitmap; use crate::query_tokens::{QueryTokens, QueryToken}; use crate::mdfs::Mdfs; use crate::{Index, DocumentId}; // Building these factories is not free. static LEVDIST0: Lazy = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST1: Lazy = Lazy::new(|| LevBuilder::new(1, true)); static LEVDIST2: Lazy = Lazy::new(|| LevBuilder::new(2, true)); pub struct Search<'a> { query: Option, offset: usize, limit: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { Search { query: None, offset: 0, limit: 20, rtxn, index } } pub fn query(&mut self, query: impl Into) -> &mut Search<'a> { self.query = Some(query.into()); self } pub fn offset(&mut self, offset: usize) -> &mut Search<'a> { self.offset = offset; self } pub fn limit(&mut self, limit: usize) -> &mut Search<'a> { self.limit = limit; self } /// Extracts the query words from the query string and returns the DFAs accordingly. /// TODO introduce settings for the number of typos regarding the words lengths. fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> { let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2); let words: Vec<_> = QueryTokens::new(query).collect(); let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace); let number_of_words = words.len(); words.into_iter().enumerate().map(|(i, word)| { let (word, quoted) = match word { QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3), QueryToken::Quoted(word) => (word.to_lowercase(), true), }; let is_last = i + 1 == number_of_words; let is_prefix = is_last && !ends_with_whitespace && !quoted; let lev = match word.len() { 0..=4 => if quoted { lev0 } else { lev0 }, 5..=8 => if quoted { lev0 } else { lev1 }, _ => if quoted { lev0 } else { lev2 }, }; let dfa = if is_prefix { lev.build_prefix_dfa(&word) } else { lev.build_dfa(&word) }; (word, is_prefix, dfa) }) .collect() } /// Fetch the words from the given FST related to the given DFAs along with /// the associated documents ids. fn fetch_words_docids( &self, fst: &fst::Set>, dfas: Vec<(String, bool, DFA)>, ) -> anyhow::Result, RoaringBitmap)>> { // A Vec storing all the derived words from the original query words, associated // with the distance from the original word and the docids where the words appears. let mut derived_words = Vec::<(HashMap::, RoaringBitmap)>::with_capacity(dfas.len()); for (_word, _is_prefix, dfa) in dfas { let mut acc_derived_words = HashMap::new(); let mut unions_docids = RoaringBitmap::new(); let mut stream = fst.search_with_state(&dfa).into_stream(); while let Some((word, state)) = stream.next() { let word = std::str::from_utf8(word)?; let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap(); let distance = dfa.distance(state); unions_docids.union_with(&docids); acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids)); } derived_words.push((acc_derived_words, unions_docids)); } Ok(derived_words) } /// Returns the set of docids that contains all of the query words. fn compute_candidates( derived_words: &[(HashMap, RoaringBitmap)], ) -> RoaringBitmap { // We sort the derived words by inverse popularity, this way intersections are faster. let mut derived_words: Vec<_> = derived_words.iter().collect(); derived_words.sort_unstable_by_key(|(_, docids)| docids.len()); // we do a union between all the docids of each of the derived words, // we got N unions (the number of original query words), we then intersect them. let mut candidates = RoaringBitmap::new(); for (i, (_, union_docids)) in derived_words.iter().enumerate() { if i == 0 { candidates = union_docids.clone(); } else { candidates.intersect_with(&union_docids); } } candidates } pub fn execute(&self) -> anyhow::Result { let limit = self.limit; let fst = self.index.words_fst(self.rtxn)?; // Construct the DFAs related to the query words. let dfas = match self.query.as_deref().map(Self::generate_query_dfas) { Some(dfas) if !dfas.is_empty() => dfas, _ => { // If the query is not set or results in no DFAs we return a placeholder. let documents_ids = self.index.documents_ids(self.rtxn)?.iter().take(limit).collect(); return Ok(SearchResult { documents_ids, ..Default::default() }) }, }; let derived_words = self.fetch_words_docids(&fst, dfas)?; let candidates = Self::compute_candidates(&derived_words); debug!("candidates: {:?}", candidates); // The mana depth first search is a revised DFS that explore // solutions in the order of their proximities. let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates); let mut documents = Vec::new(); // We execute the Mdfs iterator until we find enough documents. while documents.iter().map(RoaringBitmap::len).sum::() < limit as u64 { match mdfs.next().transpose()? { Some((proximity, answer)) => { debug!("answer with a proximity of {}: {:?}", proximity, answer); documents.push(answer); }, None => break, } } let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect(); let documents_ids = documents.into_iter().flatten().take(limit).collect(); Ok(SearchResult { found_words, documents_ids }) } } #[derive(Default)] pub struct SearchResult { pub found_words: HashSet, // TODO those documents ids should be associated with their criteria scores. pub documents_ids: Vec, }