203: Make the MatchingWords return the number of matching bytes r=Kerollmops a=LegendreM

Make the MatchingWords return the number of matching bytes using a custom Levenshtein algorithm.

Fix #138

Co-authored-by: many <maxime@meilisearch.com>
This commit is contained in:
bors[bot] 2021-06-01 12:00:33 +00:00 committed by GitHub
commit 7d36d664a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 213 additions and 80 deletions

View File

@ -0,0 +1,210 @@
use std::collections::HashSet;
use std::cmp::{min, Reverse};
use std::collections::BTreeMap;
use std::ops::{Index, IndexMut};
use levenshtein_automata::{DFA, Distance};
use crate::search::query_tree::{Operation, Query};
use super::build_dfa;
type IsPrefix = bool;
/// Structure created from a query tree
/// referencing words that match the given query tree.
#[derive(Default)]
pub struct MatchingWords {
dfas: Vec<(DFA, String, u8, IsPrefix)>,
}
impl MatchingWords {
pub fn from_query_tree(tree: &Operation) -> Self {
// fetch matchable words from the query tree
let mut dfas: Vec<_> = fetch_queries(tree)
.into_iter()
// create DFAs for each word
.map(|(w, t, p)| (build_dfa(w, t, p), w.to_string(), t, p))
.collect();
// Sort word by len in DESC order prioritizing the longuest word,
// in order to highlight the longuest part of the matched word.
dfas.sort_unstable_by_key(|(_dfa, query_word, _typo, _is_prefix)| Reverse(query_word.len()));
Self { dfas }
}
/// Returns the number of matching bytes if the word matches one of the query words.
pub fn matching_bytes(&self, word: &str) -> Option<usize> {
self.dfas.iter().find_map(|(dfa, query_word, typo, is_prefix)| match dfa.eval(word) {
Distance::Exact(t) if t <= *typo => {
if *is_prefix {
let (_dist, len) = prefix_damerau_levenshtein(query_word.as_bytes(), word.as_bytes());
Some(len)
} else {
Some(word.len())
}
},
_otherwise => None,
})
}
}
/// Lists all words which can be considered as a match for the query tree.
fn fetch_queries(tree: &Operation) -> HashSet<(&str, u8, IsPrefix)> {
fn resolve_ops<'a>(tree: &'a Operation, out: &mut HashSet<(&'a str, u8, IsPrefix)>) {
match tree {
Operation::Or(_, ops) | Operation::And(ops) | Operation::Consecutive(ops) => {
ops.as_slice().iter().for_each(|op| resolve_ops(op, out));
},
Operation::Query(Query { prefix, kind }) => {
let typo = if kind.is_exact() { 0 } else { kind.typo() };
out.insert((kind.word(), typo, *prefix));
},
}
}
let mut queries = HashSet::new();
resolve_ops(tree, &mut queries);
queries
}
// A simple wrapper around vec so we can get contiguous but index it like it's 2D array.
struct N2Array<T> {
y_size: usize,
buf: Vec<T>,
}
impl<T: Clone> N2Array<T> {
fn new(x: usize, y: usize, value: T) -> N2Array<T> {
N2Array {
y_size: y,
buf: vec![value; x * y],
}
}
}
impl<T> Index<(usize, usize)> for N2Array<T> {
type Output = T;
#[inline]
fn index(&self, (x, y): (usize, usize)) -> &T {
&self.buf[(x * self.y_size) + y]
}
}
impl<T> IndexMut<(usize, usize)> for N2Array<T> {
#[inline]
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut T {
&mut self.buf[(x * self.y_size) + y]
}
}
/// Returns the distance between the source word and the target word,
/// and the number of byte matching in the target word.
fn prefix_damerau_levenshtein(source: &[u8], target: &[u8]) -> (u32, usize) {
let (n, m) = (source.len(), target.len());
if n == 0 {
return (m as u32, 0);
}
if m == 0 {
return (n as u32, 0);
}
if n == m && source == target {
return (0, m);
}
let inf = n + m;
let mut matrix = N2Array::new(n + 2, m + 2, 0);
matrix[(0, 0)] = inf;
for i in 0..n + 1 {
matrix[(i + 1, 0)] = inf;
matrix[(i + 1, 1)] = i;
}
for j in 0..m + 1 {
matrix[(0, j + 1)] = inf;
matrix[(1, j + 1)] = j;
}
let mut last_row = BTreeMap::new();
for (row, char_s) in source.iter().enumerate() {
let mut last_match_col = 0;
let row = row + 1;
for (col, char_t) in target.iter().enumerate() {
let col = col + 1;
let last_match_row = *last_row.get(&char_t).unwrap_or(&0);
let cost = if char_s == char_t { 0 } else { 1 };
let dist_add = matrix[(row, col + 1)] + 1;
let dist_del = matrix[(row + 1, col)] + 1;
let dist_sub = matrix[(row, col)] + cost;
let dist_trans = matrix[(last_match_row, last_match_col)]
+ (row - last_match_row - 1)
+ 1
+ (col - last_match_col - 1);
let dist = min(min(dist_add, dist_del), min(dist_sub, dist_trans));
matrix[(row + 1, col + 1)] = dist;
if cost == 0 {
last_match_col = col;
}
}
last_row.insert(char_s, row);
}
let mut minimum = (u32::max_value(), 0);
for x in 0..=m {
let dist = matrix[(n + 1, x + 1)] as u32;
if dist < minimum.0 {
minimum = (dist, x)
}
}
minimum
}
#[cfg(test)]
mod tests {
use super::*;
use crate::MatchingWords;
use crate::search::query_tree::{Operation, Query, QueryKind};
#[test]
fn matched_length() {
let query = "Levenste";
let text = "Levenshtein";
let (dist, length) = prefix_damerau_levenshtein(query.as_bytes(), text.as_bytes());
assert_eq!(dist, 1);
assert_eq!(&text[..length], "Levenshte");
}
#[test]
fn matching_words() {
let query_tree = Operation::Or(false, vec![
Operation::And(vec![
Operation::Query(Query { prefix: true, kind: QueryKind::exact("split".to_string()) }),
Operation::Query(Query { prefix: false, kind: QueryKind::exact("this".to_string()) }),
Operation::Query(Query { prefix: true, kind: QueryKind::tolerant(1, "world".to_string()) }),
]),
]);
let matching_words = MatchingWords::from_query_tree(&query_tree);
assert_eq!(matching_words.matching_bytes("word"), Some(4));
assert_eq!(matching_words.matching_bytes("nyc"), None);
assert_eq!(matching_words.matching_bytes("world"), Some(5));
assert_eq!(matching_words.matching_bytes("splitted"), Some(5));
assert_eq!(matching_words.matching_bytes("thisnew"), None);
assert_eq!(matching_words.matching_bytes("borld"), Some(5));
assert_eq!(matching_words.matching_bytes("wordsplit"), Some(4));
}
}

View File

@ -17,7 +17,7 @@ use crate::search::criteria::r#final::{Final, FinalResult};
use crate::{Index, DocumentId};
pub use self::facet::{FacetCondition, FacetDistribution, FacetIter, Operator};
pub use self::query_tree::MatchingWords;
pub use self::matching_words::MatchingWords;
use self::query_tree::QueryTreeBuilder;
// Building these factories is not free.
@ -29,6 +29,7 @@ mod criteria;
mod distinct;
mod facet;
mod query_tree;
mod matching_words;
pub struct Search<'a> {
query: Option<String>,

View File

@ -1,14 +1,11 @@
use std::collections::HashSet;
use std::{fmt, cmp, mem};
use fst::Set;
use levenshtein_automata::{DFA, Distance};
use meilisearch_tokenizer::{TokenKind, tokenizer::TokenStream};
use roaring::RoaringBitmap;
use slice_group_by::GroupBy;
use crate::Index;
use super::build_dfa;
type IsOptionalWord = bool;
type IsPrefix = bool;
@ -294,48 +291,6 @@ fn synonyms(ctx: &impl Context, word: &[&str]) -> heed::Result<Option<Vec<Operat
}))
}
/// The query tree builder is the interface to build a query tree.
#[derive(Default)]
pub struct MatchingWords {
dfas: Vec<(DFA, u8)>,
}
impl MatchingWords {
/// List all words which can be considered as a match for the query tree.
pub fn from_query_tree(tree: &Operation) -> Self {
Self {
dfas: fetch_queries(tree).into_iter().map(|(w, t, p)| (build_dfa(w, t, p), t)).collect()
}
}
/// Return true if the word match.
pub fn matches(&self, word: &str) -> bool {
self.dfas.iter().any(|(dfa, typo)| match dfa.eval(word) {
Distance::Exact(t) => t <= *typo,
Distance::AtLeast(_) => false,
})
}
}
/// Lists all words which can be considered as a match for the query tree.
fn fetch_queries(tree: &Operation) -> HashSet<(&str, u8, IsPrefix)> {
fn resolve_ops<'a>(tree: &'a Operation, out: &mut HashSet<(&'a str, u8, IsPrefix)>) {
match tree {
Operation::Or(_, ops) | Operation::And(ops) | Operation::Consecutive(ops) => {
ops.as_slice().iter().for_each(|op| resolve_ops(op, out));
},
Operation::Query(Query { prefix, kind }) => {
let typo = if kind.is_exact() { 0 } else { kind.typo() };
out.insert((kind.word(), typo, *prefix));
},
}
}
let mut queries = HashSet::new();
resolve_ops(tree, &mut queries);
queries
}
/// Main function that creates the final query tree from the primitive query.
fn create_query_tree(
ctx: &impl Context,
@ -561,7 +516,7 @@ pub fn maximum_proximity(operation: &Operation) -> usize {
mod test {
use std::collections::HashMap;
use maplit::{hashmap, hashset};
use maplit::hashmap;
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig};
use rand::{Rng, SeedableRng, rngs::StdRng};
@ -951,39 +906,6 @@ mod test {
assert_eq!(expected, query_tree);
}
#[test]
fn fetching_words() {
let query = "wordsplit nyc world";
let analyzer = Analyzer::new(AnalyzerConfig::<Vec<u8>>::default());
let result = analyzer.analyze(query);
let tokens = result.tokens();
let context = TestContext::default();
let (query_tree, _) = context.build(false, true, None, tokens).unwrap().unwrap();
let expected = hashset!{
("word", 0, false),
("nyc", 0, false),
("wordsplit", 2, false),
("wordsplitnycworld", 2, true),
("nature", 0, false),
("new", 0, false),
("city", 0, false),
("world", 1, true),
("york", 0, false),
("split", 0, false),
("nycworld", 1, true),
("earth", 0, false),
("wordsplitnyc", 2, false),
};
let mut keys = context.postings.keys().collect::<Vec<_>>();
keys.sort_unstable();
let words = fetch_queries(&query_tree);
assert_eq!(expected, words);
}
#[test]
fn words_limit() {
let query = "\"hey my\" good friend";