meilisearch/milli/src/search/new/query_graph.rs

402 lines
14 KiB
Rust
Raw Normal View History

use std::collections::HashSet;
use std::fmt::Debug;
use heed::RoTxn;
use super::{
db_cache::DatabaseCache,
query_term::{LocatedQueryTerm, QueryTerm, WordDerivations},
};
use crate::{Index, Result};
#[derive(Clone)]
pub enum QueryNode {
Term(LocatedQueryTerm),
Deleted,
Start,
End,
}
#[derive(Debug, Clone)]
pub struct Edges {
pub incoming: HashSet<usize>,
pub outgoing: HashSet<usize>,
}
#[derive(Debug, Clone)]
pub struct QueryGraph {
pub root_node: usize,
pub end_node: usize,
pub nodes: Vec<QueryNode>,
pub edges: Vec<Edges>,
}
fn _assert_sizes() {
let _: [u8; 112] = [0; std::mem::size_of::<QueryNode>()];
let _: [u8; 96] = [0; std::mem::size_of::<Edges>()];
}
impl Default for QueryGraph {
/// Create a new QueryGraph with two disconnected nodes: the root and end nodes.
fn default() -> Self {
let nodes = vec![QueryNode::Start, QueryNode::End];
let edges = vec![
Edges { incoming: HashSet::new(), outgoing: HashSet::new() },
Edges { incoming: HashSet::new(), outgoing: HashSet::new() },
];
Self { root_node: 0, end_node: 1, nodes, edges }
}
}
impl QueryGraph {
fn connect_to_node(&mut self, from_nodes: &[usize], end_node: usize) {
for &from_node in from_nodes {
self.edges[from_node].outgoing.insert(end_node);
self.edges[end_node].incoming.insert(from_node);
}
}
fn add_node(&mut self, from_nodes: &[usize], node: QueryNode) -> usize {
let new_node_idx = self.nodes.len();
self.nodes.push(node);
self.edges.push(Edges {
incoming: from_nodes.iter().copied().collect(),
outgoing: HashSet::new(),
});
for from_node in from_nodes {
self.edges[*from_node].outgoing.insert(new_node_idx);
}
new_node_idx
}
}
impl QueryGraph {
// TODO: return the list of all matching words here as well
pub fn from_query<'transaction>(
index: &Index,
txn: &RoTxn,
_db_cache: &mut DatabaseCache<'transaction>,
query: Vec<LocatedQueryTerm>,
) -> Result<QueryGraph> {
// TODO: maybe empty nodes should not be removed here, to compute
// the score of the `words` ranking rule correctly
// it is very easy to traverse the graph and remove afterwards anyway
// Still, I'm keeping this here as a demo
let mut empty_nodes = vec![];
let word_set = index.words_fst(txn)?;
let mut graph = QueryGraph::default();
let (mut prev2, mut prev1, mut prev0): (Vec<usize>, Vec<usize>, Vec<usize>) =
(vec![], vec![], vec![graph.root_node]);
// TODO: add all the word derivations found in the fst
// and add split words / support phrases
for length in 1..=query.len() {
let query = &query[..length];
let term0 = query.last().unwrap();
let mut new_nodes = vec![];
let new_node_idx = graph.add_node(&prev0, QueryNode::Term(term0.clone()));
new_nodes.push(new_node_idx);
if term0.is_empty() {
empty_nodes.push(new_node_idx);
}
if !prev1.is_empty() {
if let Some((ngram2_str, ngram2_pos)) =
LocatedQueryTerm::ngram2(&query[length - 2], &query[length - 1])
{
if word_set.contains(ngram2_str.as_bytes()) {
let ngram2 = LocatedQueryTerm {
value: QueryTerm::Word {
derivations: WordDerivations {
original: ngram2_str.clone(),
// TODO: could add a typo if it's an ngram?
zero_typo: vec![ngram2_str],
one_typo: vec![],
two_typos: vec![],
use_prefix_db: false,
},
},
positions: ngram2_pos,
};
let ngram2_idx = graph.add_node(&prev1, QueryNode::Term(ngram2));
new_nodes.push(ngram2_idx);
}
}
}
if !prev2.is_empty() {
if let Some((ngram3_str, ngram3_pos)) = LocatedQueryTerm::ngram3(
&query[length - 3],
&query[length - 2],
&query[length - 1],
) {
if word_set.contains(ngram3_str.as_bytes()) {
let ngram3 = LocatedQueryTerm {
value: QueryTerm::Word {
derivations: WordDerivations {
original: ngram3_str.clone(),
// TODO: could add a typo if it's an ngram?
zero_typo: vec![ngram3_str],
one_typo: vec![],
two_typos: vec![],
use_prefix_db: false,
},
},
positions: ngram3_pos,
};
let ngram3_idx = graph.add_node(&prev2, QueryNode::Term(ngram3));
new_nodes.push(ngram3_idx);
}
}
}
(prev0, prev1, prev2) = (new_nodes, prev0, prev1);
}
graph.connect_to_node(&prev0, graph.end_node);
graph.remove_nodes_keep_edges(&empty_nodes);
Ok(graph)
}
pub fn remove_nodes(&mut self, nodes: &[usize]) {
for &node in nodes {
self.nodes[node] = QueryNode::Deleted;
let edges = self.edges[node].clone();
for &pred in edges.incoming.iter() {
self.edges[pred].outgoing.remove(&node);
}
for succ in edges.outgoing {
self.edges[succ].incoming.remove(&node);
}
self.edges[node] = Edges { incoming: HashSet::new(), outgoing: HashSet::new() };
}
}
pub fn remove_nodes_keep_edges(&mut self, nodes: &[usize]) {
for &node in nodes {
self.nodes[node] = QueryNode::Deleted;
let edges = self.edges[node].clone();
for &pred in edges.incoming.iter() {
self.edges[pred].outgoing.remove(&node);
self.edges[pred].outgoing.extend(edges.outgoing.iter());
}
for succ in edges.outgoing {
self.edges[succ].incoming.remove(&node);
self.edges[succ].incoming.extend(edges.incoming.iter());
}
self.edges[node] = Edges { incoming: HashSet::new(), outgoing: HashSet::new() };
}
}
pub fn remove_words_at_position(&mut self, position: i8) {
let mut nodes_to_remove_keeping_edges = vec![];
let mut nodes_to_remove = vec![];
for (node_idx, node) in self.nodes.iter().enumerate() {
let QueryNode::Term(LocatedQueryTerm { value: _, positions }) = node else { continue };
if positions.contains(&position) {
nodes_to_remove_keeping_edges.push(node_idx)
} else if positions.contains(&position) {
nodes_to_remove.push(node_idx)
}
}
self.remove_nodes(&nodes_to_remove);
self.remove_nodes_keep_edges(&nodes_to_remove_keeping_edges);
self.simplify();
}
fn simplify(&mut self) {
loop {
let mut nodes_to_remove = vec![];
for (node_idx, node) in self.nodes.iter().enumerate() {
if (!matches!(node, QueryNode::End | QueryNode::Deleted)
&& self.edges[node_idx].outgoing.is_empty())
|| (!matches!(node, QueryNode::Start | QueryNode::Deleted)
&& self.edges[node_idx].incoming.is_empty())
{
nodes_to_remove.push(node_idx);
}
}
if nodes_to_remove.is_empty() {
break;
} else {
self.remove_nodes(&nodes_to_remove);
}
}
}
}
impl Debug for QueryNode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
QueryNode::Term(term @ LocatedQueryTerm { value, positions: _ }) => match value {
QueryTerm::Word {
derivations:
WordDerivations { original, zero_typo, one_typo, two_typos, use_prefix_db },
} => {
if term.is_empty() {
write!(f, "\"{original} (∅)\"")
} else {
let derivations = std::iter::once(original.clone())
.chain(zero_typo.iter().map(|s| format!("T0 .. {s}")))
.chain(one_typo.iter().map(|s| format!("T1 .. {s}")))
.chain(two_typos.iter().map(|s| format!("T2 .. {s}")))
.collect::<Vec<String>>()
.join(" | ");
write!(f, "\"{derivations}")?;
if *use_prefix_db {
write!(f, " | +prefix_db")?;
}
write!(f, " | pos:{}..={}", term.positions.start(), term.positions.end())?;
write!(f, "\"")?;
/*
"beautiful" [label = "<f0> beautiful | beauiful | beautifol"]
*/
Ok(())
}
}
QueryTerm::Phrase(ws) => {
let joined =
ws.iter().filter_map(|x| x.clone()).collect::<Vec<String>>().join(" ");
let in_quotes = format!("\"{joined}\"");
let escaped = in_quotes.escape_default().collect::<String>();
write!(f, "\"{escaped}\"")
}
},
QueryNode::Start => write!(f, "\"START\""),
QueryNode::End => write!(f, "\"END\""),
QueryNode::Deleted => write!(f, "\"_deleted_\""),
}
}
}
/*
TODO:
1. Find the minimum number of words to check to resolve the 10 query trees at once.
(e.g. just 0 | 01 | 012 )
2. Simplify the query tree after removal of a node
3. Create the proximity graph
4. Assign different proximities for the ngrams
5. Walk the proximity graph, finding all the potential paths of weight N from START to END
(without checking the bitmaps)
*/
impl QueryGraph {
pub fn graphviz(&self) -> String {
let mut desc = String::new();
desc.push_str(
r#"
digraph G {
rankdir = LR;
node [shape = "record"]
"#,
);
for node in 0..self.nodes.len() {
if matches!(self.nodes[node], QueryNode::Deleted) {
continue;
}
desc.push_str(&format!("{node} [label = {:?}]", &self.nodes[node],));
if node == self.root_node {
desc.push_str("[color = blue]");
} else if node == self.end_node {
desc.push_str("[color = red]");
}
desc.push_str(";\n");
for edge in self.edges[node].outgoing.iter() {
desc.push_str(&format!("{node} -> {edge};\n"));
}
// for edge in self.edges[node].incoming.iter() {
// desc.push_str(&format!("{node} -> {edge} [color = grey];\n"));
// }
}
desc.push('}');
desc
}
}
#[cfg(test)]
mod tests {
use charabia::Tokenize;
use super::{LocatedQueryTerm, QueryGraph, QueryNode};
use crate::index::tests::TempIndex;
use crate::new::db_cache::DatabaseCache;
use crate::search::new::query_term::word_derivations;
#[test]
fn build_graph() {
let mut index = TempIndex::new();
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|s| {
s.set_searchable_fields(vec!["text".to_owned()]);
})
.unwrap();
index
.add_documents(documents!({
"text": "0 1 2 3 4 5 6 7 01 23 234 56 79 709 7356",
}))
.unwrap();
// let fst = fst::Set::from_iter(["01", "23", "234", "56"]).unwrap();
let txn = index.read_txn().unwrap();
let mut db_cache = DatabaseCache::default();
let fst = index.words_fst(&txn).unwrap();
let query = LocatedQueryTerm::from_query(
"0 no 1 2 3 4 5 6 7".tokenize(),
None,
|word, is_prefix| {
word_derivations(
&index,
&txn,
word,
if word.len() < 3 {
0
} else if word.len() < 6 {
1
} else {
2
},
is_prefix,
&fst,
)
},
)
.unwrap();
let graph = QueryGraph::from_query(&index, &txn, &mut db_cache, query).unwrap();
println!("{}", graph.graphviz());
// let positions_to_remove = vec![3, 6, 0, 4];
// for p in positions_to_remove {
// graph.remove_words_at_position(p);
// println!("{}", graph.graphviz());
// }
// let proximities = |w1: &str, w2: &str| -> Vec<i8> {
// if matches!((w1, w2), ("56", "7")) {
// vec![]
// } else {
// vec![1, 2]
// }
// };
// let prox_graph = ProximityGraph::from_query_graph(graph, proximities);
// println!("{}", prox_graph.graphviz());
}
}
// fn remove_element_from_vector(v: &mut Vec<usize>, el: usize) {
// let position = v.iter().position(|&x| x == el).unwrap();
// v.swap_remove(position);
// }