meilisearch/milli/src/search/new/query_term.rs

306 lines
11 KiB
Rust
Raw Normal View History

// TODO: put primitive query part in here
use std::borrow::Cow;
use std::mem;
use std::ops::RangeInclusive;
use charabia::normalizer::NormalizedTokenIter;
use charabia::{SeparatorKind, TokenKind};
use fst::automaton::Str;
use fst::{Automaton, IntoStreamer, Streamer};
use heed::types::DecodeIgnore;
use heed::RoTxn;
use crate::search::fst_utils::{Complement, Intersection, StartsWith, Union};
use crate::search::{build_dfa, get_first};
use crate::{Index, Result};
#[derive(Debug, Clone)]
pub struct WordDerivations {
// TODO: should have a list for the words corresponding to the prefix as well!
// This is to implement the `exactness` ranking rule.
// However, we could also consider every term in `zero_typo` (except first one) to
// be words of that the original word is a prefix of
pub original: String,
pub zero_typo: Vec<String>,
pub one_typo: Vec<String>,
pub two_typos: Vec<String>,
pub use_prefix_db: bool,
}
impl WordDerivations {
pub fn all_derivations_except_prefix_db(&self) -> impl Iterator<Item = &String> + Clone {
self.zero_typo.iter().chain(self.one_typo.iter()).chain(self.two_typos.iter())
}
fn is_empty(&self) -> bool {
self.zero_typo.is_empty()
&& self.one_typo.is_empty()
&& self.two_typos.is_empty()
&& !self.use_prefix_db
}
}
pub fn word_derivations(
index: &Index,
txn: &RoTxn,
word: &str,
max_typo: u8,
is_prefix: bool,
fst: &fst::Set<Cow<[u8]>>,
) -> Result<WordDerivations> {
let use_prefix_db = is_prefix
&& index.word_prefix_docids.remap_data_type::<DecodeIgnore>().get(txn, word)?.is_some();
let mut zero_typo = vec![];
let mut one_typo = vec![];
let mut two_typos = vec![];
if max_typo == 0 {
if is_prefix {
let prefix = Str::new(word).starts_with();
let mut stream = fst.search(prefix).into_stream();
while let Some(word) = stream.next() {
let word = std::str::from_utf8(word)?;
zero_typo.push(word.to_string());
}
} else if fst.contains(word) {
zero_typo.push(word.to_string());
}
} else if max_typo == 1 {
let dfa = build_dfa(word, 1, is_prefix);
let starts = StartsWith(Str::new(get_first(word)));
let mut stream = fst.search_with_state(Intersection(starts, &dfa)).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let d = dfa.distance(state.1);
match d.to_u8() {
0 => {
zero_typo.push(word.to_string());
}
1 => {
one_typo.push(word.to_string());
}
_ => panic!(),
}
}
} else {
let starts = StartsWith(Str::new(get_first(word)));
let first = Intersection(build_dfa(word, 1, is_prefix), Complement(&starts));
let second_dfa = build_dfa(word, 2, is_prefix);
let second = Intersection(&second_dfa, &starts);
let automaton = Union(first, &second);
let mut stream = fst.search_with_state(automaton).into_stream();
while let Some((found_word, state)) = stream.next() {
let found_word = std::str::from_utf8(found_word)?;
// in the case the typo is on the first letter, we know the number of typo
// is two
if get_first(found_word) != get_first(word) {
two_typos.push(found_word.to_string());
} else {
// Else, we know that it is the second dfa that matched and compute the
// correct distance
let d = second_dfa.distance((state.1).0);
match d.to_u8() {
0 => {
zero_typo.push(found_word.to_string());
}
1 => {
one_typo.push(found_word.to_string());
}
2 => {
two_typos.push(found_word.to_string());
}
_ => panic!(),
}
}
}
}
Ok(WordDerivations { original: word.to_owned(), zero_typo, one_typo, two_typos, use_prefix_db })
}
#[derive(Debug, Clone)]
pub enum QueryTerm {
Phrase(Vec<Option<String>>),
Word { derivations: WordDerivations },
}
impl QueryTerm {
pub fn original_single_word(&self) -> Option<&str> {
match self {
QueryTerm::Phrase(_) => None,
QueryTerm::Word { derivations } => {
if derivations.is_empty() {
None
} else {
Some(derivations.original.as_str())
}
}
}
}
}
#[derive(Debug, Clone)]
pub struct LocatedQueryTerm {
pub value: QueryTerm, // value should be able to contain the word derivations as well
pub positions: RangeInclusive<i8>,
}
impl LocatedQueryTerm {
pub fn is_empty(&self) -> bool {
match &self.value {
QueryTerm::Phrase(_) => false,
QueryTerm::Word { derivations, .. } => derivations.is_empty(),
}
}
/// Create primitive query from tokenized query string,
/// the primitive query is an intermediate state to build the query tree.
pub fn from_query(
query: NormalizedTokenIter<Vec<u8>>,
words_limit: Option<usize>,
derivations: impl Fn(&str, bool) -> Result<WordDerivations>,
) -> Result<Vec<LocatedQueryTerm>> {
let mut primitive_query = Vec::new();
let mut phrase = Vec::new();
let mut quoted = false;
let parts_limit = words_limit.unwrap_or(usize::MAX);
let mut position = -1i8;
let mut phrase_start = -1i8;
let mut phrase_end = -1i8;
let mut peekable = query.peekable();
while let Some(token) = peekable.next() {
// early return if word limit is exceeded
if primitive_query.len() >= parts_limit {
return Ok(primitive_query);
}
match token.kind {
TokenKind::Word | TokenKind::StopWord => {
position += 1;
// 1. if the word is quoted we push it in a phrase-buffer waiting for the ending quote,
// 2. if the word is not the last token of the query and is not a stop_word we push it as a non-prefix word,
// 3. if the word is the last token of the query we push it as a prefix word.
if quoted {
phrase_end = position;
if phrase.is_empty() {
phrase_start = position;
}
if let TokenKind::StopWord = token.kind {
phrase.push(None);
} else {
// TODO: in a phrase, check that every word exists
// otherwise return WordDerivations::Empty
phrase.push(Some(token.lemma().to_string()));
}
} else if peekable.peek().is_some() {
if let TokenKind::StopWord = token.kind {
} else {
let derivations = derivations(token.lemma(), false)?;
let located_term = LocatedQueryTerm {
value: QueryTerm::Word { derivations },
positions: position..=position,
};
primitive_query.push(located_term);
}
} else {
let derivations = derivations(token.lemma(), true)?;
let located_term = LocatedQueryTerm {
value: QueryTerm::Word { derivations },
positions: position..=position,
};
primitive_query.push(located_term);
}
}
TokenKind::Separator(separator_kind) => {
match separator_kind {
SeparatorKind::Hard => {
position += 1;
}
SeparatorKind::Soft => {
position += 0;
}
}
let quote_count = token.lemma().chars().filter(|&s| s == '"').count();
// swap quoted state if we encounter a double quote
if quote_count % 2 != 0 {
quoted = !quoted;
}
// if there is a quote or a hard separator we close the phrase.
if !phrase.is_empty()
&& (quote_count > 0 || separator_kind == SeparatorKind::Hard)
{
let located_query_term = LocatedQueryTerm {
value: QueryTerm::Phrase(mem::take(&mut phrase)),
positions: phrase_start..=phrase_end,
};
primitive_query.push(located_query_term);
}
}
_ => (),
}
}
// If a quote is never closed, we consider all of the end of the query as a phrase.
if !phrase.is_empty() {
let located_query_term = LocatedQueryTerm {
value: QueryTerm::Phrase(mem::take(&mut phrase)),
positions: phrase_start..=phrase_end,
};
primitive_query.push(located_query_term);
}
Ok(primitive_query)
}
}
impl LocatedQueryTerm {
pub fn ngram2(
x: &LocatedQueryTerm,
y: &LocatedQueryTerm,
) -> Option<(String, RangeInclusive<i8>)> {
if *x.positions.end() != y.positions.start() - 1 {
println!(
"x positions end: {}, y positions start: {}",
*x.positions.end(),
y.positions.start()
);
return None;
}
match (&x.value.original_single_word(), &y.value.original_single_word()) {
(Some(w1), Some(w2)) => {
let term = (format!("{w1}{w2}"), *x.positions.start()..=*y.positions.end());
Some(term)
}
_ => None,
}
}
pub fn ngram3(
x: &LocatedQueryTerm,
y: &LocatedQueryTerm,
z: &LocatedQueryTerm,
) -> Option<(String, RangeInclusive<i8>)> {
if *x.positions.end() != y.positions.start() - 1
|| *y.positions.end() != z.positions.start() - 1
{
return None;
}
match (
&x.value.original_single_word(),
&y.value.original_single_word(),
&z.value.original_single_word(),
) {
(Some(w1), Some(w2), Some(w3)) => {
let term = (format!("{w1}{w2}{w3}"), *x.positions.start()..=*z.positions.end());
Some(term)
}
_ => None,
}
}
}