mbcp/docs/zh-Hant/api/mp_math/point.md
2024-08-28 22:07:43 +08:00

2.8 KiB

title
mbcp.mp_math.point

class Point3

def __init__(self, x: float, y: float, z: float)

笛卡尔坐标系中的点。

參數:

  • x: x 坐标

  • y: y 坐标

  • z: z 坐标

源碼
def __init__(self, x: float, y: float, z: float):
    """
        笛卡尔坐标系中的点。
        Args:
            x: x 坐标
            y: y 坐标
            z: z 坐标
        """
    self.x = x
    self.y = y
    self.z = z

def approx(self, other: 'Point3', epsilon: float = APPROX) -> bool

判断两个点是否近似相等。

參數:

  • other:

  • epsilon:

返回:

  • 是否近似相等
源碼
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
    """
        判断两个点是否近似相等。
        Args:
            other:
            epsilon:

        Returns:
            是否近似相等
        """
    return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])

def __str__(self)

源碼
def __str__(self):
    return f'Point3({self.x}, {self.y}, {self.z})'

@overload

def __add__(self, other: 'Vector3') -> 'Point3'

源碼
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
    ...

@overload

def __add__(self, other: 'Point3') -> 'Point3'

源碼
@overload
def __add__(self, other: 'Point3') -> 'Point3':
    ...

def __add__(self, other)

P + V -> P P + P -> P

參數:

  • other:
源碼
def __add__(self, other):
    """
        P + V -> P
        P + P -> P
        Args:
            other:
        Returns:
        """
    return Point3(self.x + other.x, self.y + other.y, self.z + other.z)

def __eq__(self, other)

判断两个点是否相等。

參數:

  • other:
源碼
def __eq__(self, other):
    """
        判断两个点是否相等。
        Args:
            other:
        Returns:
        """
    return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)

def __sub__(self, other: 'Point3') -> 'Vector3'

P - P -> V

P - V -> P 已在 :class:Vector3 中实现

參數:

  • other:
源碼
def __sub__(self, other: 'Point3') -> 'Vector3':
    """
        P - P -> V

        P - V -> P  已在 :class:`Vector3` 中实现
        Args:
            other:
        Returns:

        """
    from .vector import Vector3
    return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)