mirror of
https://github.com/snowykami/mbcp.git
synced 2025-01-20 10:08:22 +08:00
341 lines
5.3 KiB
Markdown
341 lines
5.3 KiB
Markdown
---
|
||
title: mbcp.mp\nmath.vector
|
||
order: 1
|
||
icon: laptop-code
|
||
category: API
|
||
---
|
||
|
||
### ***class*** `Vector3`
|
||
|
||
|
||
|
||
###   ***def*** `__init__(self, x: float, y: float, z: float) -> None`
|
||
|
||
 3维向量
|
||
|
||
Args:
|
||
|
||
x: x轴分量
|
||
|
||
y: y轴分量
|
||
|
||
z: z轴分量
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def __init__(self, x: float, y: float, z: float):
|
||
"""
|
||
3维向量
|
||
Args:
|
||
x: x轴分量
|
||
y: y轴分量
|
||
z: z轴分量
|
||
"""
|
||
self.x = x
|
||
self.y = y
|
||
self.z = z
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `approx(self, other: 'Vector3', epsilon: float) -> bool`
|
||
|
||
 判断两个向量是否近似相等。
|
||
|
||
Args:
|
||
|
||
other:
|
||
|
||
epsilon:
|
||
|
||
|
||
|
||
Returns:
|
||
|
||
是否近似相等
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
|
||
"""
|
||
判断两个向量是否近似相等。
|
||
Args:
|
||
other:
|
||
epsilon:
|
||
|
||
Returns:
|
||
是否近似相等
|
||
"""
|
||
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `cal_angle(self, other: 'Vector3') -> 'AnyAngle'`
|
||
|
||
 计算两个向量之间的夹角。
|
||
|
||
Args:
|
||
|
||
other: 另一个向量
|
||
|
||
Returns:
|
||
|
||
夹角
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
|
||
"""
|
||
计算两个向量之间的夹角。
|
||
Args:
|
||
other: 另一个向量
|
||
Returns:
|
||
夹角
|
||
"""
|
||
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `cross(self, other: 'Vector3') -> 'Vector3'`
|
||
|
||
 向量积 叉乘:v1 cross v2 -> v3
|
||
|
||
|
||
|
||
叉乘为0,则两向量平行。
|
||
|
||
其余结果的模为平行四边形的面积。
|
||
|
||
|
||
|
||
返回如下行列式的结果:
|
||
|
||
|
||
|
||
``i j k``
|
||
|
||
|
||
|
||
``x1 y1 z1``
|
||
|
||
|
||
|
||
``x2 y2 z2``
|
||
|
||
|
||
|
||
Args:
|
||
|
||
other:
|
||
|
||
Returns:
|
||
|
||
行列式的结果
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def cross(self, other: 'Vector3') -> 'Vector3':
|
||
"""
|
||
向量积 叉乘:v1 cross v2 -> v3
|
||
|
||
叉乘为0,则两向量平行。
|
||
其余结果的模为平行四边形的面积。
|
||
|
||
返回如下行列式的结果:
|
||
|
||
``i j k``
|
||
|
||
``x1 y1 z1``
|
||
|
||
``x2 y2 z2``
|
||
|
||
Args:
|
||
other:
|
||
Returns:
|
||
行列式的结果
|
||
"""
|
||
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `is_approx_parallel(self, other: 'Vector3', epsilon: float) -> bool`
|
||
|
||
 判断两个向量是否近似平行。
|
||
|
||
Args:
|
||
|
||
other: 另一个向量
|
||
|
||
epsilon: 允许的误差
|
||
|
||
Returns:
|
||
|
||
是否近似平行
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
|
||
"""
|
||
判断两个向量是否近似平行。
|
||
Args:
|
||
other: 另一个向量
|
||
epsilon: 允许的误差
|
||
Returns:
|
||
是否近似平行
|
||
"""
|
||
return self.cross(other).length < epsilon
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `is_parallel(self, other: 'Vector3') -> bool`
|
||
|
||
 判断两个向量是否平行。
|
||
|
||
Args:
|
||
|
||
other: 另一个向量
|
||
|
||
Returns:
|
||
|
||
是否平行
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def is_parallel(self, other: 'Vector3') -> bool:
|
||
"""
|
||
判断两个向量是否平行。
|
||
Args:
|
||
other: 另一个向量
|
||
Returns:
|
||
是否平行
|
||
"""
|
||
return self.cross(other).approx(zero_vector3)
|
||
```
|
||
</details>
|
||
|
||
###   ***def*** `normalize(self) -> None`
|
||
|
||
 将向量归一化。
|
||
|
||
|
||
|
||
自体归一化,不返回值。
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
def normalize(self):
|
||
"""
|
||
将向量归一化。
|
||
|
||
自体归一化,不返回值。
|
||
"""
|
||
length = self.length
|
||
self.x /= length
|
||
self.y /= length
|
||
self.z /= length
|
||
```
|
||
</details>
|
||
|
||
###   ***@property***
|
||
###   ***def*** `np_array(self: Any) -> 'np.ndarray'`
|
||
|
||
 返回numpy数组
|
||
|
||
Returns:
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
@property
|
||
def np_array(self) -> 'np.ndarray':
|
||
"""
|
||
返回numpy数组
|
||
Returns:
|
||
"""
|
||
return np.array([self.x, self.y, self.z])
|
||
```
|
||
</details>
|
||
|
||
###   ***@property***
|
||
###   ***def*** `length(self: Any) -> float`
|
||
|
||
 向量的模。
|
||
|
||
Returns:
|
||
|
||
模
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
@property
|
||
def length(self) -> float:
|
||
"""
|
||
向量的模。
|
||
Returns:
|
||
模
|
||
"""
|
||
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
|
||
```
|
||
</details>
|
||
|
||
###   ***@property***
|
||
###   ***def*** `unit(self: Any) -> 'Vector3'`
|
||
|
||
 获取该向量的单位向量。
|
||
|
||
Returns:
|
||
|
||
单位向量
|
||
|
||
<details>
|
||
<summary>源代码</summary>
|
||
|
||
```python
|
||
@property
|
||
def unit(self) -> 'Vector3':
|
||
"""
|
||
获取该向量的单位向量。
|
||
Returns:
|
||
单位向量
|
||
"""
|
||
return self / self.length
|
||
```
|
||
</details>
|
||
|
||
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
|
||
|
||
|
||
|
||
### ***var*** `x_axis = Vector3(1, 0, 0)`
|
||
|
||
|
||
|
||
### ***var*** `y_axis = Vector3(0, 1, 0)`
|
||
|
||
|
||
|
||
### ***var*** `z_axis = Vector3(0, 0, 1)`
|
||
|
||
|
||
|
||
### ***var*** `length = self.length`
|
||
|
||
|
||
|