mbcp/docs/ja/api/mp_math/equation.md
2024-08-29 13:46:59 +08:00

152 lines
3.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
**説明**: 求N元函数一阶偏导函数。这玩意不太稳定慎用。
**戻り値**: 偏导函数
**引数**:
> - func: 函数
> - var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
> - epsilon: 偏移量
**例外**:
> - ValueError 无效变量类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
**説明**: 曲线方程。
**引数**:
> - x_func: x函数
> - y_func: y函数
> - z_func: z函数
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
**説明**: 计算曲线上的点。
**引数**:
> - *t:
> - 参数:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>