Skip to content

模块 mbcp.mp_math.plane

本模块定义了三维空间中的平面类

class Plane3

method __init__(self, a: float, b: float, c: float, d: float)

说明: 平面方程:ax + by + cz + d = 0

参数:

  • a (float): x系数
  • b (float): y系数
  • c (float): z系数
  • d (float): 常数项
源代码在GitHub上查看
python
def __init__(self, a: float, b: float, c: float, d: float):
    """
        平面方程:ax + by + cz + d = 0
        Args:
            a ([`float`](https%3A//docs.python.org/3/library/functions.html#float)): x系数
            b (`float`): y系数
            c (`float`): z系数
            d (`float`): 常数项
        """
    self.a = a
    self.b = b
    self.c = c
    self.d = d

method approx(self, other: Plane3) -> bool

说明: 判断两个平面是否近似相等。

参数:

  • other (Plane3): 另一个平面

返回: bool: 是否近似相等

源代码在GitHub上查看
python
def approx(self, other: 'Plane3') -> bool:
    """
        判断两个平面是否近似相等。
        Args:
            other ([`Plane3`](./plane#class-plane3)): 另一个平面
        Returns:
            [`bool`](https://docs.python.org/3/library/functions.html#bool): 是否近似相等
        """
    if self.a != 0:
        k = other.a / self.a
        return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
    elif self.b != 0:
        k = other.b / self.b
        return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
    elif self.c != 0:
        k = other.c / self.c
        return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
    else:
        return False

method cal_angle(self, other: Line3 | Plane3) -> AnyAngle

说明: 计算平面与平面之间的夹角。

TIP

平面间夹角计算公式:

θ=arccos(n1n2|n1||n2|)

其中 n1n2 分别为两个平面的法向量

TIP

平面与直线夹角计算公式:

θ=arccos(nd|n||d|)

其中 n 为平面的法向量,d 为直线的方向向量

参数:

返回: AnyAngle: 夹角

引发:

源代码在GitHub上查看
python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
    """
        计算平面与平面之间的夹角。
        :::tip
        平面间夹角计算公式:
        $$\\theta = \\arccos(\\frac{n1 \\cdot n2}{|n1| \\cdot |n2|})$$
        其中 $n1$ 和 $n2$ 分别为两个平面的法向量
        :::
        :::tip
        平面与直线夹角计算公式:
        $$\\theta = \\arccos(\\frac{n \\cdot d}{|n| \\cdot |d|})$$
        其中 $n$ 为平面的法向量,$d$ 为直线的方向向量
        :::
        Args:
            other ([`Line3`](./line#class-line3) | [`Plane3`](./plane#class-plane3)): 另一个平面或直线
        Returns:
            [`AnyAngle`](./angle#class-anyangle): 夹角
        Raises:
            [`TypeError`](https%3A//docs.python.org/3/library/exceptions.html#TypeError): 不支持的类型
        """
    if isinstance(other, Line3):
        return self.normal.cal_angle(other.direction).complementary
    elif isinstance(other, Plane3):
        return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
    else:
        raise TypeError(f'Unsupported type: {type(other)}')

method cal_distance(self, other: Plane3 | Point3) -> float

说明: 计算平面与平面或点之间的距离。

参数:

返回: float: 距离

引发:

源代码在GitHub上查看
python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
    """
        计算平面与平面或点之间的距离。
        Args:
            other ([`Plane3`](./plane#class-plane3) | [`Point3`](./point#class-point3)): 另一个平面或点
        Returns:
            [`float`](https%3A//docs.python.org/3/library/functions.html#float): 距离
        Raises:
            [`TypeError`](https%3A//docs.python.org/3/library/exceptions.html#TypeError): 不支持的类型
        """
    if isinstance(other, Plane3):
        return 0
    elif isinstance(other, Point3):
        return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
    else:
        raise TypeError(f'Unsupported type: {type(other)}')

method cal_intersection_line3(self, other: Plane3) -> Line3

说明: 计算两平面的交线。

TIP

计算两平面交线的一般步骤:

  1. 求两平面的法向量的叉乘得到方向向量
d=n1×n2
  1. 寻找直线上的一点,依次假设x=0, y=0, z=0,并代入两平面方程求出合适的点 直线最终可用参数方程或点向式表示
{x=x0+dty=y0+dtz=z0+dt

xx0m=yy0n=zz0p

参数:

  • other (Plane3): 另一个平面

返回: Line3: 交线

引发:

源代码在GitHub上查看
python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
    """
        计算两平面的交线。
        :::tip
        计算两平面交线的一般步骤:
        1. 求两平面的法向量的叉乘得到方向向量
        $$ d = n1 \\times n2 $$
        2. 寻找直线上的一点,依次假设$x=0$, $y=0$, $z=0$,并代入两平面方程求出合适的点
        直线最终可用参数方程或点向式表示
        $$ \\begin{cases} x = x_0 + dt \\\\ y = y_0 + dt \\\\ z = z_0 + dt \\end{cases} $$

        $$ \\frac{x - x_0}{m} = \\frac{y - y_0}{n} = \\frac{z - z_0}{p} $$
        :::

        Args:
            other ([`Plane3`](./plane#class-plane3)): 另一个平面
        Returns:
            [`Line3`](./line#class-line3): 交线
        Raises:
            [`ValueError`](https%3A//docs.python.org/3/library/exceptions.html#ValueError): 平面平行且无交线
        """
    if self.normal.is_parallel(other.normal):
        raise ValueError('Planes are parallel and have no intersection.')
    direction = self.normal.cross(other.normal)
    x, y, z = (0, 0, 0)
    if self.a != 0 and other.a != 0:
        A = np.array([[self.b, self.c], [other.b, other.c]])
        B = np.array([-self.d, -other.d])
        y, z = np.linalg.solve(A, B)
    elif self.b != 0 and other.b != 0:
        A = np.array([[self.a, self.c], [other.a, other.c]])
        B = np.array([-self.d, -other.d])
        x, z = np.linalg.solve(A, B)
    elif self.c != 0 and other.c != 0:
        A = np.array([[self.a, self.b], [other.a, other.b]])
        B = np.array([-self.d, -other.d])
        x, y = np.linalg.solve(A, B)
    return Line3(Point3(x, y, z), direction)

method cal_intersection_point3(self, other: Line3) -> Point3

说明: 计算平面与直线的交点。

参数:

返回: Point3: 交点

引发:

源代码在GitHub上查看
python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
    """
        计算平面与直线的交点。
        Args:
            other ([`Line3`](./line#class-line3)): 直线
        Returns:
            [`Point3`](./point#class-point3): 交点
        Raises:
            [`ValueError`](https%3A//docs.python.org/3/library/exceptions.html#ValueError): 平面与直线平行或重合
        """
    if self.normal @ other.direction == 0:
        raise ValueError('The plane and the line are parallel or coincident.')
    x, y, z = other.get_parametric_equations()
    t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
    return Point3(x(t), y(t), z(t))

method cal_parallel_plane3(self, point: Point3) -> Plane3

说明: 计算平行于该平面且过指定点的平面。

参数:

返回: Plane3: 平面

源代码在GitHub上查看
python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
    """
        计算平行于该平面且过指定点的平面。
        Args:
            point ([`Point3`](./point#class-point3)): 指定点
        Returns:
            [`Plane3`](./plane#class-plane3): 平面
        """
    return Plane3.from_point_and_normal(point, self.normal)

method is_parallel(self, other: Plane3) -> bool

说明: 判断两个平面是否平行。

参数:

  • other (Plane3): 另一个平面

返回: bool: 是否平行

源代码在GitHub上查看
python
def is_parallel(self, other: 'Plane3') -> bool:
    """
        判断两个平面是否平行。
        Args:
            other ([`Plane3`](./plane#class-plane3)): 另一个平面
        Returns:
            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否平行
        """
    return self.normal.is_parallel(other.normal)

@property

method normal(self) -> Vector3

说明: 平面的法向量。

返回: Vector3: 法向量

源代码在GitHub上查看
python
@property
def normal(self) -> 'Vector3':
    """
        平面的法向量。
        Returns:
            [`Vector3`](./vector#class-vector3): 法向量
        """
    return Vector3(self.a, self.b, self.c)

@classmethod

method from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3

说明: 工厂函数 由点和法向量构造平面(点法式构造)。

参数:

返回: Plane3: 平面

源代码在GitHub上查看
python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
    """
        工厂函数 由点和法向量构造平面(点法式构造)。
        Args:
            point ([`Point3`](./point#class-point3)): 平面上一点
            normal ([`Vector3`](./vector#class-vector3)): 法向量
        Returns:
            [`Plane3`](./plane#class-plane3): 平面
        """
    a, b, c = (normal.x, normal.y, normal.z)
    d = -a * point.x - b * point.y - c * point.z
    return cls(a, b, c, d)

@classmethod

method from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3

说明: 工厂函数 由三点构造平面。

参数:

  • p1 (Point3): 点1
  • p2 (Point3): 点2
  • p3 (Point3): 点3

返回: 平面

源代码在GitHub上查看
python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
    """
        工厂函数 由三点构造平面。
        Args:
            p1 ([`Point3`](./point#class-point3)): 点1
            p2 (`Point3`): 点2
            p3 (`Point3`): 点3
        Returns:
            平面
        """
    v1 = p2 - p1
    v2 = p3 - p1
    normal = v1.cross(v2)
    return cls.from_point_and_normal(p1, normal)

@classmethod

method from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3

说明: 工厂函数 由两直线构造平面。

参数:

  • l1 (Line3): 直线
  • l2 (Line3): 直线

返回: 平面

源代码在GitHub上查看
python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
    """
        工厂函数 由两直线构造平面。
        Args:
            l1 ([`Line3`](./line#class-line3)): 直线
            l2 (`Line3`): 直线
        Returns:
            平面
        """
    v1 = l1.direction
    v2 = l2.point - l1.point
    if v2 == zero_vector3:
        v2 = l2.get_point(1) - l1.point
    return cls.from_point_and_normal(l1.point, v1.cross(v2))

@classmethod

method from_point_and_line(cls, point: Point3, line: Line3) -> Plane3

说明: 工厂函数 由点和直线构造平面。

参数:

返回: 平面

源代码在GitHub上查看
python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
    """
        工厂函数 由点和直线构造平面。
        Args:
            point ([`Point3`](./point#class-point3)): 平面上一点
            line ([`Line3`](./line#class-line3)): 直线
        Returns:
            平面
        """
    return cls.from_point_and_normal(point, line.direction)

@overload

method __and__(self, other: Line3) -> Point3 | None

源代码在GitHub上查看
python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
    ...

@overload

method __and__(self, other: Plane3) -> Line3 | None

源代码在GitHub上查看
python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
    ...

method __and__(self, other)

说明: 取两平面的交集(人话:交线)

参数:

返回: Line3 | Point3 | None: 交集

引发:

源代码在GitHub上查看
python
def __and__(self, other):
    """
        取两平面的交集(人话:交线)
        Args:
            other ([`Line3`](./line#class-line3) | [`Plane3`](./plane#class-plane3)): 另一个平面或直线
        Returns:
            [`Line3`](./line#class-line3) | [`Point3`](./point#class-point3) | [`None`](https%3A//docs.python.org/3/library/constants.html#None): 交集
        Raises:
            [`TypeError`](https%3A//docs.python.org/3/library/exceptions.html#TypeError): 不支持的类型
        """
    if isinstance(other, Plane3):
        if self.normal.is_parallel(other.normal):
            return None
        return self.cal_intersection_line3(other)
    elif isinstance(other, Line3):
        if self.normal @ other.direction == 0:
            return None
        return self.cal_intersection_point3(other)
    else:
        raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")

method __eq__(self, other) -> bool

说明: 判断两个平面是否等价。

参数:

  • other (Plane3): 另一个平面

返回: bool: 是否等价

源代码在GitHub上查看
python
def __eq__(self, other) -> bool:
    """
        判断两个平面是否等价。
        Args:
            other ([`Plane3`](./plane#class-plane3)): 另一个平面
        Returns:
            [`bool`](https%3A//docs.python.org/3/library/functions.html#bool): 是否等价
        """
    return self.approx(other)

method __rand__(self, other: Line3) -> Point3

源代码在GitHub上查看
python
def __rand__(self, other: 'Line3') -> 'Point3':
    return self.cal_intersection_point3(other)

文档由 VitePress 构建 | API引用由 litedoc 生成