📝 构建文档测试

This commit is contained in:
远野千束(神羽) 2024-08-29 15:07:35 +08:00
parent 84f8228f3b
commit eb6e309b0d
45 changed files with 0 additions and 8427 deletions

View File

@ -1,3 +0,0 @@
---
title: mbcp
---

View File

@ -1,399 +0,0 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
**Description**: 任意角度。
**Arguments**:
> - value: 角度或弧度值
> - is_radian: 是否为弧度,默认为否
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
**Description**: 余角两角的和为90°。
**Return**: 余角
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
**Description**: 补角两角的和为180°。
**Return**: 补角
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
**Description**: 角度。
**Return**: 弧度
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
**Description**: 最小正角。
**Return**: 最小正角度
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
**Description**: 最大负角。
**Return**: 最大负角度
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
**Description**: 正弦值。
**Return**: 正弦值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
**Description**: 余弦值。
**Return**: 余弦值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
**Description**: 正切值。
**Return**: 正切值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
**Description**: 余切值。
**Return**: 余切值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
**Description**: 正割值。
**Return**: 正割值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
**Description**: 余割值。
**Return**: 余割值
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <b>Source code</b> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <b>Source code</b> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <b>Source code</b> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <b>Source code</b> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math.const
---

View File

@ -1,151 +0,0 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
**Description**: 求N元函数一阶偏导函数。这玩意不太稳定慎用。
**Arguments**:
> - func: 函数
> - var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
> - epsilon: 偏移量
**Return**: 偏导函数
**Raises**:
> - ValueError 无效变量类型
<details>
<summary> <b>Source code</b> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <b>Source code</b> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <b>Source code</b> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
**Description**: 曲线方程。
**Arguments**:
> - x_func: x函数
> - y_func: y函数
> - z_func: z函数
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
**Description**: 计算曲线上的点。
**Arguments**:
> - *t:
> - 参数:
<details>
<summary> <b>Source code</b> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math
---

View File

@ -1,530 +0,0 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
**Description**: 三维空间中的直线。由一个点和一个方向向量确定。
**Arguments**:
> - point: 直线上的一点
> - direction: 直线的方向向量
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
**Description**: 判断两条直线是否近似相等。
**Arguments**:
> - other: 另一条直线
> - epsilon: 误差
**Return**: 是否近似相等
<details>
<summary> <b>Source code</b> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
**Description**: 计算直线和直线之间的夹角。
**Arguments**:
> - other: 另一条直线
**Return**: 夹角弧度
**Raises**:
> - TypeError 不支持的类型
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
**Description**: 计算直线和直线或点之间的距离。
**Arguments**:
> - other: 平行直线或点
**Return**: 距离
**Raises**:
> - TypeError 不支持的类型
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
**Description**: 计算两条直线的交点。
**Arguments**:
> - other: 另一条直线
**Return**: 交点
**Raises**:
> - ValueError 直线平行
> - ValueError 直线不共面
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
**Description**: 计算直线经过指定点p的垂线。
**Arguments**:
> - point: 指定点
**Return**: 垂线
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
**Description**: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**Arguments**:
> - t: 参数t
**Return**: 点
<details>
<summary> <b>Source code</b> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
**Description**: 获取直线的参数方程。
**Return**: x(t), y(t), z(t)
<details>
<summary> <b>Source code</b> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
**Description**: 判断两条直线是否近似平行。
**Arguments**:
> - other: 另一条直线
> - epsilon: 误差
**Return**: 是否近似平行
<details>
<summary> <b>Source code</b> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
**Description**: 判断两条直线是否平行。
**Arguments**:
> - other: 另一条直线
**Return**: 是否平行
<details>
<summary> <b>Source code</b> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
**Description**: 判断两条直线是否共线。
**Arguments**:
> - other: 另一条直线
**Return**: 是否共线
<details>
<summary> <b>Source code</b> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
**Description**: 判断点是否在直线上。
**Arguments**:
> - point: 点
**Return**: 是否在直线上
<details>
<summary> <b>Source code</b> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
**Description**: 判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**Arguments**:
> - other: 另一条直线
**Return**: 是否共面
<details>
<summary> <b>Source code</b> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
**Description**: 简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <b>Source code</b> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
**Description**: 工厂函数 由两点构造直线。
**Arguments**:
> - p1: 点1
> - p2: 点2
**Return**: 直线
<details>
<summary> <b>Source code</b> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
**Description**: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**Arguments**:
> - other: 另一条直线
**Return**: 交点
<details>
<summary> <b>Source code</b> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
**Description**: 判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -1,63 +0,0 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **Type**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **Type**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **Type**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **Type**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **Type**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **Type**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **Type**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **Type**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **Type**: `TypeAlias`

View File

@ -1,542 +0,0 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
**Description**: 平面方程ax + by + cz + d = 0
**Arguments**:
> - a: x系数
> - b: y系数
> - c: z系数
> - d: 常数项
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
**Description**: 判断两个平面是否近似相等。
**Arguments**:
> - other: 另一个平面
**Return**: 是否近似相等
<details>
<summary> <b>Source code</b> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
**Description**: 计算平面与平面之间的夹角。
**Arguments**:
> - other: 另一个平面
**Return**: 夹角弧度
**Raises**:
> - TypeError 不支持的类型
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
**Description**: 计算平面与平面或点之间的距离。
**Arguments**:
> - other: 另一个平面或点
**Return**: 距离
**Raises**:
> - TypeError 不支持的类型
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
**Description**: 计算两平面的交线。
**Arguments**:
> - other: 另一个平面
**Return**: 两平面的交线
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
**Description**: 计算平面与直线的交点。
**Arguments**:
> - other: 不与平面平行或在平面上的直线
**Return**: 交点
**Raises**:
> - ValueError 平面与直线平行或重合
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
**Description**: 计算平行于该平面且过指定点的平面。
**Arguments**:
> - point: 指定点
**Return**: 所求平面
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
**Description**: 判断两个平面是否平行。
**Arguments**:
> - other: 另一个平面
**Return**: 是否平行
<details>
<summary> <b>Source code</b> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
**Description**: 平面的法向量。
**Return**: 法向量
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
**Description**: 工厂函数 由点和法向量构造平面(点法式构造)。
**Arguments**:
> - point: 平面上的一点
> - normal: 法向量
**Return**: 平面
<details>
<summary> <b>Source code</b> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
**Description**: 工厂函数 由三点构造平面。
**Arguments**:
> - p1: 点1
> - p2: 点2
> - p3: 点3
**Return**: 平面
<details>
<summary> <b>Source code</b> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
**Description**: 工厂函数 由两直线构造平面。
**Arguments**:
> - l1: 直线1
> - l2: 直线2
**Return**: 平面
<details>
<summary> <b>Source code</b> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
**Description**: 工厂函数 由点和直线构造平面。
**Arguments**:
> - point: 面上一点
> - line: 面上直线,不包含点
**Return**: 平面
<details>
<summary> <b>Source code</b> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
**Description**: 取两平面的交集(人话:交线)
**Arguments**:
> - other:
**Return**: 不平行平面的交线平面平行返回None
<details>
<summary> <b>Source code</b> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <b>Source code</b> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -1,176 +0,0 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
**Description**: 笛卡尔坐标系中的点。
**Arguments**:
> - x: x 坐标
> - y: y 坐标
> - z: z 坐标
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
**Description**: 判断两个点是否近似相等。
**Arguments**:
> - other:
> - epsilon:
**Return**: 是否近似相等
<details>
<summary> <b>Source code</b> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**Description**: P + V -> P
P + P -> P
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
**Description**: 判断两个点是否相等。
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
**Description**: P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -1,34 +0,0 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
**Description**: 三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -1,200 +0,0 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
**Description**: 区间限定函数
**Arguments**:
> - x: 待限定的值
> - min_: 最小值
> - max_: 最大值
**Return**: 限制后的值
<details>
<summary> <b>Source code</b> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
**Description**: 判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**Arguments**:
> - x: 数1
> - y: 数2
> - epsilon: 误差
**Return**: 是否近似相等
<details>
<summary> <b>Source code</b> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
**Description**: 获取数的符号。
**Arguments**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**Return**: 符号 + - ""
<details>
<summary> <b>Source code</b> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
**Description**: 格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**Arguments**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**Return**: 符号 + - ""
<details>
<summary> <b>Source code</b> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <b>Source code</b> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <b>Source code</b> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -1,656 +0,0 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
**Description**: 3维向量
**Arguments**:
> - x: x轴分量
> - y: y轴分量
> - z: z轴分量
<details>
<summary> <b>Source code</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
**Description**: 判断两个向量是否近似相等。
**Arguments**:
> - other:
> - epsilon:
**Return**: 是否近似相等
<details>
<summary> <b>Source code</b> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
**Description**: 计算两个向量之间的夹角。
**Arguments**:
> - other: 另一个向量
**Return**: 夹角
<details>
<summary> <b>Source code</b> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
**Description**: 向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**Arguments**:
> - other:
**Return**: 行列式的结果
<details>
<summary> <b>Source code</b> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
**Description**: 判断两个向量是否近似平行。
**Arguments**:
> - other: 另一个向量
> - epsilon: 允许的误差
**Return**: 是否近似平行
<details>
<summary> <b>Source code</b> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
**Description**: 判断两个向量是否平行。
**Arguments**:
> - other: 另一个向量
**Return**: 是否平行
<details>
<summary> <b>Source code</b> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
**Description**: 将向量归一化。
自体归一化,不返回值。
<details>
<summary> <b>Source code</b> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
**Description**: 向量的模。
**Return**: 模
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
**Description**: 获取该向量的单位向量。
**Return**: 单位向量
<details>
<summary> <b>Source code</b> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <b>Source code</b> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**Description**: V + P -> P
V + V -> V
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
**Description**: 判断两个向量是否相等。
**Arguments**:
> - other:
**Return**: 是否相等
<details>
<summary> <b>Source code</b> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
**Description**: P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <b>Source code</b> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
**Description**: V - P -> P
V - V -> V
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
**Description**: P - V -> P
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
**Description**: 数组运算 非点乘。点乘使用@叉乘使用cross。
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
**Description**: 点乘。
**Arguments**:
> - other:
<details>
<summary> <b>Source code</b> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <b>Source code</b> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <b>Source code</b> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **Type**: `Vector3`
- **Description**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **Type**: `Vector3`
- **Description**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **Type**: `Vector3`
- **Description**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **Type**: `Vector3`
- **Description**: z轴单位向量

View File

@ -1,3 +0,0 @@
---
title: mbcp.particle
---

View File

@ -1,3 +0,0 @@
---
title: mbcp.presets
---

View File

@ -1,43 +0,0 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
**Description**: 生成球体上的点集。
**Arguments**:
> - radius:
> - density:
**Return**: List[Point3]: 球体上的点集。
<details>
<summary> <b>Source code</b> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp
---

View File

@ -1,399 +0,0 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
**説明**: 任意角度。
**引数**:
> - value: 角度或弧度值
> - is_radian: 是否为弧度,默认为否
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
**説明**: 余角两角的和为90°。
**戻り値**: 余角
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
**説明**: 补角两角的和为180°。
**戻り値**: 补角
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
**説明**: 角度。
**戻り値**: 弧度
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
**説明**: 最小正角。
**戻り値**: 最小正角度
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
**説明**: 最大负角。
**戻り値**: 最大负角度
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
**説明**: 正弦值。
**戻り値**: 正弦值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
**説明**: 余弦值。
**戻り値**: 余弦值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
**説明**: 正切值。
**戻り値**: 正切值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
**説明**: 余切值。
**戻り値**: 余切值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
**説明**: 正割值。
**戻り値**: 正割值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
**説明**: 余割值。
**戻り値**: 余割值
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math.const
---

View File

@ -1,151 +0,0 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
**説明**: 求N元函数一阶偏导函数。这玩意不太稳定慎用。
**引数**:
> - func: 函数
> - var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
> - epsilon: 偏移量
**戻り値**: 偏导函数
**例外**:
> - ValueError 无效变量类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
**説明**: 曲线方程。
**引数**:
> - x_func: x函数
> - y_func: y函数
> - z_func: z函数
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
**説明**: 计算曲线上的点。
**引数**:
> - *t:
> - 参数:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math
---

View File

@ -1,530 +0,0 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
**説明**: 三维空间中的直线。由一个点和一个方向向量确定。
**引数**:
> - point: 直线上的一点
> - direction: 直线的方向向量
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
**説明**: 判断两条直线是否近似相等。
**引数**:
> - other: 另一条直线
> - epsilon: 误差
**戻り値**: 是否近似相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
**説明**: 计算直线和直线之间的夹角。
**引数**:
> - other: 另一条直线
**戻り値**: 夹角弧度
**例外**:
> - TypeError 不支持的类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
**説明**: 计算直线和直线或点之间的距离。
**引数**:
> - other: 平行直线或点
**戻り値**: 距离
**例外**:
> - TypeError 不支持的类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
**説明**: 计算两条直线的交点。
**引数**:
> - other: 另一条直线
**戻り値**: 交点
**例外**:
> - ValueError 直线平行
> - ValueError 直线不共面
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
**説明**: 计算直线经过指定点p的垂线。
**引数**:
> - point: 指定点
**戻り値**: 垂线
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
**説明**: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**引数**:
> - t: 参数t
**戻り値**: 点
<details>
<summary> <b>ソースコード</b> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
**説明**: 获取直线的参数方程。
**戻り値**: x(t), y(t), z(t)
<details>
<summary> <b>ソースコード</b> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
**説明**: 判断两条直线是否近似平行。
**引数**:
> - other: 另一条直线
> - epsilon: 误差
**戻り値**: 是否近似平行
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
**説明**: 判断两条直线是否平行。
**引数**:
> - other: 另一条直线
**戻り値**: 是否平行
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
**説明**: 判断两条直线是否共线。
**引数**:
> - other: 另一条直线
**戻り値**: 是否共线
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
**説明**: 判断点是否在直线上。
**引数**:
> - point: 点
**戻り値**: 是否在直线上
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
**説明**: 判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**引数**:
> - other: 另一条直线
**戻り値**: 是否共面
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
**説明**: 简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <b>ソースコード</b> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
**説明**: 工厂函数 由两点构造直线。
**引数**:
> - p1: 点1
> - p2: 点2
**戻り値**: 直线
<details>
<summary> <b>ソースコード</b> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
**説明**: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**引数**:
> - other: 另一条直线
**戻り値**: 交点
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
**説明**: 判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -1,63 +0,0 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **タイプ**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **タイプ**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **タイプ**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **タイプ**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **タイプ**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **タイプ**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **タイプ**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **タイプ**: `TypeAlias`

View File

@ -1,542 +0,0 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
**説明**: 平面方程ax + by + cz + d = 0
**引数**:
> - a: x系数
> - b: y系数
> - c: z系数
> - d: 常数项
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
**説明**: 判断两个平面是否近似相等。
**引数**:
> - other: 另一个平面
**戻り値**: 是否近似相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
**説明**: 计算平面与平面之间的夹角。
**引数**:
> - other: 另一个平面
**戻り値**: 夹角弧度
**例外**:
> - TypeError 不支持的类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
**説明**: 计算平面与平面或点之间的距离。
**引数**:
> - other: 另一个平面或点
**戻り値**: 距离
**例外**:
> - TypeError 不支持的类型
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
**説明**: 计算两平面的交线。
**引数**:
> - other: 另一个平面
**戻り値**: 两平面的交线
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
**説明**: 计算平面与直线的交点。
**引数**:
> - other: 不与平面平行或在平面上的直线
**戻り値**: 交点
**例外**:
> - ValueError 平面与直线平行或重合
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
**説明**: 计算平行于该平面且过指定点的平面。
**引数**:
> - point: 指定点
**戻り値**: 所求平面
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
**説明**: 判断两个平面是否平行。
**引数**:
> - other: 另一个平面
**戻り値**: 是否平行
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
**説明**: 平面的法向量。
**戻り値**: 法向量
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
**説明**: 工厂函数 由点和法向量构造平面(点法式构造)。
**引数**:
> - point: 平面上的一点
> - normal: 法向量
**戻り値**: 平面
<details>
<summary> <b>ソースコード</b> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
**説明**: 工厂函数 由三点构造平面。
**引数**:
> - p1: 点1
> - p2: 点2
> - p3: 点3
**戻り値**: 平面
<details>
<summary> <b>ソースコード</b> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
**説明**: 工厂函数 由两直线构造平面。
**引数**:
> - l1: 直线1
> - l2: 直线2
**戻り値**: 平面
<details>
<summary> <b>ソースコード</b> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
**説明**: 工厂函数 由点和直线构造平面。
**引数**:
> - point: 面上一点
> - line: 面上直线,不包含点
**戻り値**: 平面
<details>
<summary> <b>ソースコード</b> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
**説明**: 取两平面的交集(人话:交线)
**引数**:
> - other:
**戻り値**: 不平行平面的交线平面平行返回None
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -1,176 +0,0 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
**説明**: 笛卡尔坐标系中的点。
**引数**:
> - x: x 坐标
> - y: y 坐标
> - z: z 坐标
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个点是否近似相等。
**引数**:
> - other:
> - epsilon:
**戻り値**: 是否近似相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**説明**: P + V -> P
P + P -> P
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
**説明**: 判断两个点是否相等。
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
**説明**: P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -1,34 +0,0 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
**説明**: 三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -1,200 +0,0 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
**説明**: 区间限定函数
**引数**:
> - x: 待限定的值
> - min_: 最小值
> - max_: 最大值
**戻り値**: 限制后的值
<details>
<summary> <b>ソースコード</b> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
**説明**: 判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**引数**:
> - x: 数1
> - y: 数2
> - epsilon: 误差
**戻り値**: 是否近似相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
**説明**: 获取数的符号。
**引数**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**戻り値**: 符号 + - ""
<details>
<summary> <b>ソースコード</b> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
**説明**: 格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**引数**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**戻り値**: 符号 + - ""
<details>
<summary> <b>ソースコード</b> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -1,656 +0,0 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
**説明**: 3维向量
**引数**:
> - x: x轴分量
> - y: y轴分量
> - z: z轴分量
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个向量是否近似相等。
**引数**:
> - other:
> - epsilon:
**戻り値**: 是否近似相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
**説明**: 计算两个向量之间的夹角。
**引数**:
> - other: 另一个向量
**戻り値**: 夹角
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
**説明**: 向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**引数**:
> - other:
**戻り値**: 行列式的结果
<details>
<summary> <b>ソースコード</b> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个向量是否近似平行。
**引数**:
> - other: 另一个向量
> - epsilon: 允许的误差
**戻り値**: 是否近似平行
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
**説明**: 判断两个向量是否平行。
**引数**:
> - other: 另一个向量
**戻り値**: 是否平行
<details>
<summary> <b>ソースコード</b> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
**説明**: 将向量归一化。
自体归一化,不返回值。
<details>
<summary> <b>ソースコード</b> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
**説明**: 向量的模。
**戻り値**: 模
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
**説明**: 获取该向量的单位向量。
**戻り値**: 单位向量
<details>
<summary> <b>ソースコード</b> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**説明**: V + P -> P
V + V -> V
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
**説明**: 判断两个向量是否相等。
**引数**:
> - other:
**戻り値**: 是否相等
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
**説明**: P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
**説明**: V - P -> P
V - V -> V
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
**説明**: P - V -> P
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
**説明**: 数组运算 非点乘。点乘使用@叉乘使用cross。
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
**説明**: 点乘。
**引数**:
> - other:
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <b>ソースコード</b> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **タイプ**: `Vector3`
- **説明**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **タイプ**: `Vector3`
- **説明**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **タイプ**: `Vector3`
- **説明**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **タイプ**: `Vector3`
- **説明**: z轴单位向量

View File

@ -1,3 +0,0 @@
---
title: mbcp.particle
---

View File

@ -1,3 +0,0 @@
---
title: mbcp.presets
---

View File

@ -1,43 +0,0 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
**説明**: 生成球体上的点集。
**引数**:
> - radius:
> - density:
**戻り値**: List[Point3]: 球体上的点集。
<details>
<summary> <b>ソースコード</b> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp
---

View File

@ -1,399 +0,0 @@
---
title: mbcp.mp_math.angle
---
### **class** `Angle`
### **class** `AnyAngle(Angle)`
### *method* `__init__(self, value: float, is_radian: bool = False)`
**説明**: 任意角度。
**變數説明**:
> - value: 角度或弧度值
> - is_radian: 是否为弧度,默认为否
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, value: float, is_radian: bool=False):
"""
任意角度。
Args:
value: 角度或弧度值
is_radian: 是否为弧度,默认为否
"""
if is_radian:
self.radian = value
else:
self.radian = value * PI / 180
```
</details>
### `@property`
### *method* `complementary(self) -> AnyAngle`
**説明**: 余角两角的和为90°。
**返回**: 余角
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def complementary(self) -> 'AnyAngle':
"""
余角两角的和为90°。
Returns:
余角
"""
return AnyAngle(PI / 2 - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `supplementary(self) -> AnyAngle`
**説明**: 补角两角的和为180°。
**返回**: 补角
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def supplementary(self) -> 'AnyAngle':
"""
补角两角的和为180°。
Returns:
补角
"""
return AnyAngle(PI - self.minimum_positive.radian, is_radian=True)
```
</details>
### `@property`
### *method* `degree(self) -> float`
**説明**: 角度。
**返回**: 弧度
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def degree(self) -> float:
"""
角度。
Returns:
弧度
"""
return self.radian * 180 / PI
```
</details>
### `@property`
### *method* `minimum_positive(self) -> AnyAngle`
**説明**: 最小正角。
**返回**: 最小正角度
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def minimum_positive(self) -> 'AnyAngle':
"""
最小正角。
Returns:
最小正角度
"""
return AnyAngle(self.radian % (2 * PI))
```
</details>
### `@property`
### *method* `maximum_negative(self) -> AnyAngle`
**説明**: 最大负角。
**返回**: 最大负角度
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def maximum_negative(self) -> 'AnyAngle':
"""
最大负角。
Returns:
最大负角度
"""
return AnyAngle(-self.radian % (2 * PI), is_radian=True)
```
</details>
### `@property`
### *method* `sin(self) -> float`
**説明**: 正弦值。
**返回**: 正弦值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def sin(self) -> float:
"""
正弦值。
Returns:
正弦值
"""
return math.sin(self.radian)
```
</details>
### `@property`
### *method* `cos(self) -> float`
**説明**: 余弦值。
**返回**: 余弦值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def cos(self) -> float:
"""
余弦值。
Returns:
余弦值
"""
return math.cos(self.radian)
```
</details>
### `@property`
### *method* `tan(self) -> float`
**説明**: 正切值。
**返回**: 正切值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def tan(self) -> float:
"""
正切值。
Returns:
正切值
"""
return math.tan(self.radian)
```
</details>
### `@property`
### *method* `cot(self) -> float`
**説明**: 余切值。
**返回**: 余切值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def cot(self) -> float:
"""
余切值。
Returns:
余切值
"""
return 1 / math.tan(self.radian)
```
</details>
### `@property`
### *method* `sec(self) -> float`
**説明**: 正割值。
**返回**: 正割值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def sec(self) -> float:
"""
正割值。
Returns:
正割值
"""
return 1 / math.cos(self.radian)
```
</details>
### `@property`
### *method* `csc(self) -> float`
**説明**: 余割值。
**返回**: 余割值
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def csc(self) -> float:
"""
余割值。
Returns:
余割值
"""
return 1 / math.sin(self.radian)
```
</details>
### *method* `self + other: AnyAngle => AnyAngle`
<details>
<summary> <b>源碼</b> </summary>
```python
def __add__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian + other.radian, is_radian=True)
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other):
return approx(self.radian, other.radian)
```
</details>
### *method* `self - other: AnyAngle => AnyAngle`
<details>
<summary> <b>源碼</b> </summary>
```python
def __sub__(self, other: 'AnyAngle') -> 'AnyAngle':
return AnyAngle(self.radian - other.radian, is_radian=True)
```
</details>
### *method* `self * other: float => AnyAngle`
<details>
<summary> <b>源碼</b> </summary>
```python
def __mul__(self, other: float) -> 'AnyAngle':
return AnyAngle(self.radian * other, is_radian=True)
```
</details>
### `@overload`
### *method* `self / other: float => AnyAngle`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __truediv__(self, other: float) -> 'AnyAngle':
...
```
</details>
### `@overload`
### *method* `self / other: AnyAngle => float`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __truediv__(self, other: 'AnyAngle') -> float:
...
```
</details>
### *method* `self / other`
<details>
<summary> <b>源碼</b> </summary>
```python
def __truediv__(self, other):
if isinstance(other, AnyAngle):
return self.radian / other.radian
return AnyAngle(self.radian / other, is_radian=True)
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math.const
---

View File

@ -1,151 +0,0 @@
---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
**説明**: 求N元函数一阶偏导函数。这玩意不太稳定慎用。
**變數説明**:
> - func: 函数
> - var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
> - epsilon: 偏移量
**返回**: 偏导函数
**抛出**:
> - ValueError 无效变量类型
<details>
<summary> <b>源碼</b> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
<summary> <b>源碼</b> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
<summary> <b>源碼</b> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
**説明**: 曲线方程。
**變數説明**:
> - x_func: x函数
> - y_func: y函数
> - z_func: z函数
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
**説明**: 计算曲线上的点。
**變數説明**:
> - *t:
> - 参数:
<details>
<summary> <b>源碼</b> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>

View File

@ -1,3 +0,0 @@
---
title: mbcp.mp_math
---

View File

@ -1,530 +0,0 @@
---
title: mbcp.mp_math.line
---
### **class** `Line3`
### *method* `__init__(self, point: Point3, direction: Vector3)`
**説明**: 三维空间中的直线。由一个点和一个方向向量确定。
**變數説明**:
> - point: 直线上的一点
> - direction: 直线的方向向量
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, point: 'Point3', direction: 'Vector3'):
"""
三维空间中的直线。由一个点和一个方向向量确定。
Args:
point: 直线上的一点
direction: 直线的方向向量
"""
self.point = point
self.direction = direction
```
</details>
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
**説明**: 判断两条直线是否近似相等。
**變數説明**:
> - other: 另一条直线
> - epsilon: 误差
**返回**: 是否近似相等
<details>
<summary> <b>源碼</b> </summary>
```python
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
"""
判断两条直线是否近似相等。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似相等
"""
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
```
</details>
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
**説明**: 计算直线和直线之间的夹角。
**變數説明**:
> - other: 另一条直线
**返回**: 夹角弧度
**抛出**:
> - TypeError 不支持的类型
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
"""
计算直线和直线之间的夹角。
Args:
other: 另一条直线
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
return self.direction.cal_angle(other.direction)
```
</details>
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
**説明**: 计算直线和直线或点之间的距离。
**變數説明**:
> - other: 平行直线或点
**返回**: 距离
**抛出**:
> - TypeError 不支持的类型
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_distance(self, other: 'Line3 | Point3') -> float:
"""
计算直线和直线或点之间的距离。
Args:
other: 平行直线或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
if self == other:
return 0
elif self.is_parallel(other):
return (other.point - self.point).cross(self.direction).length / self.direction.length
elif not self.is_coplanar(other):
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
else:
return 0
elif isinstance(other, Point3):
return (other - self.point).cross(self.direction).length / self.direction.length
else:
raise TypeError('Unsupported type.')
```
</details>
### *method* `cal_intersection(self, other: Line3) -> Point3`
**説明**: 计算两条直线的交点。
**變數説明**:
> - other: 另一条直线
**返回**: 交点
**抛出**:
> - ValueError 直线平行
> - ValueError 直线不共面
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_intersection(self, other: 'Line3') -> 'Point3':
"""
计算两条直线的交点。
Args:
other: 另一条直线
Returns:
交点
Raises:
ValueError: 直线平行
ValueError: 直线不共面
"""
if self.is_parallel(other):
raise ValueError('Lines are parallel and do not intersect.')
if not self.is_coplanar(other):
raise ValueError('Lines are not coplanar and do not intersect.')
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
```
</details>
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
**説明**: 计算直线经过指定点p的垂线。
**變數説明**:
> - point: 指定点
**返回**: 垂线
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
"""
计算直线经过指定点p的垂线。
Args:
point: 指定点
Returns:
垂线
"""
return Line3(point, self.direction.cross(point - self.point))
```
</details>
### *method* `get_point(self, t: RealNumber) -> Point3`
**説明**: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
**變數説明**:
> - t: 参数t
**返回**: 点
<details>
<summary> <b>源碼</b> </summary>
```python
def get_point(self, t: RealNumber) -> 'Point3':
"""
获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。
Args:
t: 参数t
Returns:
"""
return self.point + t * self.direction
```
</details>
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
**説明**: 获取直线的参数方程。
**返回**: x(t), y(t), z(t)
<details>
<summary> <b>源碼</b> </summary>
```python
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
"""
获取直线的参数方程。
Returns:
x(t), y(t), z(t)
"""
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
```
</details>
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
**説明**: 判断两条直线是否近似平行。
**變數説明**:
> - other: 另一条直线
> - epsilon: 误差
**返回**: 是否近似平行
<details>
<summary> <b>源碼</b> </summary>
```python
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
"""
判断两条直线是否近似平行。
Args:
other: 另一条直线
epsilon: 误差
Returns:
是否近似平行
"""
return self.direction.is_approx_parallel(other.direction, epsilon)
```
</details>
### *method* `is_parallel(self, other: Line3) -> bool`
**説明**: 判断两条直线是否平行。
**變數説明**:
> - other: 另一条直线
**返回**: 是否平行
<details>
<summary> <b>源碼</b> </summary>
```python
def is_parallel(self, other: 'Line3') -> bool:
"""
判断两条直线是否平行。
Args:
other: 另一条直线
Returns:
是否平行
"""
return self.direction.is_parallel(other.direction)
```
</details>
### *method* `is_collinear(self, other: Line3) -> bool`
**説明**: 判断两条直线是否共线。
**變數説明**:
> - other: 另一条直线
**返回**: 是否共线
<details>
<summary> <b>源碼</b> </summary>
```python
def is_collinear(self, other: 'Line3') -> bool:
"""
判断两条直线是否共线。
Args:
other: 另一条直线
Returns:
是否共线
"""
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
```
</details>
### *method* `is_point_on(self, point: Point3) -> bool`
**説明**: 判断点是否在直线上。
**變數説明**:
> - point: 点
**返回**: 是否在直线上
<details>
<summary> <b>源碼</b> </summary>
```python
def is_point_on(self, point: 'Point3') -> bool:
"""
判断点是否在直线上。
Args:
point: 点
Returns:
是否在直线上
"""
return (point - self.point).is_parallel(self.direction)
```
</details>
### *method* `is_coplanar(self, other: Line3) -> bool`
**説明**: 判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
**變數説明**:
> - other: 另一条直线
**返回**: 是否共面
<details>
<summary> <b>源碼</b> </summary>
```python
def is_coplanar(self, other: 'Line3') -> bool:
"""
判断两条直线是否共面。
充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
Args:
other: 另一条直线
Returns:
是否共面
"""
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
```
</details>
### *method* `simplify(self)`
**説明**: 简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
<details>
<summary> <b>源碼</b> </summary>
```python
def simplify(self):
"""
简化直线方程,等价相等。
自体简化,不返回值。
按照可行性一次对x y z 化 0 处理,并对向量单位化
"""
self.direction.normalize()
if self.direction.x == 0:
self.point.x = 0
if self.direction.y == 0:
self.point.y = 0
if self.direction.z == 0:
self.point.z = 0
```
</details>
### `@classmethod`
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
**説明**: 工厂函数 由两点构造直线。
**變數説明**:
> - p1: 点1
> - p2: 点2
**返回**: 直线
<details>
<summary> <b>源碼</b> </summary>
```python
@classmethod
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
"""
工厂函数 由两点构造直线。
Args:
p1: 点1
p2: 点2
Returns:
直线
"""
direction = p2 - p1
return cls(p1, direction)
```
</details>
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
**説明**: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
**變數説明**:
> - other: 另一条直线
**返回**: 交点
<details>
<summary> <b>源碼</b> </summary>
```python
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
"""
计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。
Args:
other: 另一条直线
Returns:
交点
"""
if self.is_collinear(other):
return self
elif self.is_parallel(other) or not self.is_coplanar(other):
return None
else:
return self.cal_intersection(other)
```
</details>
### *method* `__eq__(self, other) -> bool`
**説明**: 判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other) -> bool:
"""
判断两条直线是否等价。
v1 // v2 ∧ (p1 - p2) // v1
Args:
other:
Returns:
"""
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
```
</details>

View File

@ -1,63 +0,0 @@
---
title: mbcp.mp_math.mp_math_typing
---
### ***var*** `RealNumber = int | float`
- **類型**: `TypeAlias`
### ***var*** `Number = RealNumber | complex`
- **類型**: `TypeAlias`
### ***var*** `Var = SingleVar | ArrayVar`
- **類型**: `TypeAlias`
### ***var*** `OneSingleVarFunc = Callable[[SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `OneArrayFunc = Callable[[ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `OneVarFunc = OneSingleVarFunc | OneArrayFunc`
- **類型**: `TypeAlias`
### ***var*** `TwoSingleVarsFunc = Callable[[SingleVar, SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `TwoArraysFunc = Callable[[ArrayVar, ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `TwoVarsFunc = TwoSingleVarsFunc | TwoArraysFunc`
- **類型**: `TypeAlias`
### ***var*** `ThreeSingleVarsFunc = Callable[[SingleVar, SingleVar, SingleVar], SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `ThreeArraysFunc = Callable[[ArrayVar, ArrayVar, ArrayVar], ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `ThreeVarsFunc = ThreeSingleVarsFunc | ThreeArraysFunc`
- **類型**: `TypeAlias`
### ***var*** `MultiSingleVarsFunc = Callable[..., SingleVar]`
- **類型**: `TypeAlias`
### ***var*** `MultiArraysFunc = Callable[..., ArrayVar]`
- **類型**: `TypeAlias`
### ***var*** `MultiVarsFunc = MultiSingleVarsFunc | MultiArraysFunc`
- **類型**: `TypeAlias`

View File

@ -1,542 +0,0 @@
---
title: mbcp.mp_math.plane
---
### **class** `Plane3`
### *method* `__init__(self, a: float, b: float, c: float, d: float)`
**説明**: 平面方程ax + by + cz + d = 0
**變數説明**:
> - a: x系数
> - b: y系数
> - c: z系数
> - d: 常数项
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, a: float, b: float, c: float, d: float):
"""
平面方程ax + by + cz + d = 0
Args:
a: x系数
b: y系数
c: z系数
d: 常数项
"""
self.a = a
self.b = b
self.c = c
self.d = d
```
</details>
### *method* `approx(self, other: Plane3) -> bool`
**説明**: 判断两个平面是否近似相等。
**變數説明**:
> - other: 另一个平面
**返回**: 是否近似相等
<details>
<summary> <b>源碼</b> </summary>
```python
def approx(self, other: 'Plane3') -> bool:
"""
判断两个平面是否近似相等。
Args:
other: 另一个平面
Returns:
是否近似相等
"""
if self.a != 0:
k = other.a / self.a
return approx(other.b, self.b * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.b != 0:
k = other.b / self.b
return approx(other.a, self.a * k) and approx(other.c, self.c * k) and approx(other.d, self.d * k)
elif self.c != 0:
k = other.c / self.c
return approx(other.a, self.a * k) and approx(other.b, self.b * k) and approx(other.d, self.d * k)
else:
return False
```
</details>
### *method* `cal_angle(self, other: Line3 | Plane3) -> AnyAngle`
**説明**: 计算平面与平面之间的夹角。
**變數説明**:
> - other: 另一个平面
**返回**: 夹角弧度
**抛出**:
> - TypeError 不支持的类型
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_angle(self, other: 'Line3 | Plane3') -> 'AnyAngle':
"""
计算平面与平面之间的夹角。
Args:
other: 另一个平面
Returns:
夹角弧度
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Line3):
return self.normal.cal_angle(other.direction).complementary
elif isinstance(other, Plane3):
return AnyAngle(math.acos(self.normal @ other.normal / (self.normal.length * other.normal.length)), is_radian=True)
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_distance(self, other: Plane3 | Point3) -> float`
**説明**: 计算平面与平面或点之间的距离。
**變數説明**:
> - other: 另一个平面或点
**返回**: 距离
**抛出**:
> - TypeError 不支持的类型
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_distance(self, other: 'Plane3 | Point3') -> float:
"""
计算平面与平面或点之间的距离。
Args:
other: 另一个平面或点
Returns:
距离
Raises:
TypeError: 不支持的类型
"""
if isinstance(other, Plane3):
return 0
elif isinstance(other, Point3):
return abs(self.a * other.x + self.b * other.y + self.c * other.z + self.d) / (self.a ** 2 + self.b ** 2 + self.c ** 2) ** 0.5
else:
raise TypeError(f'Unsupported type: {type(other)}')
```
</details>
### *method* `cal_intersection_line3(self, other: Plane3) -> Line3`
**説明**: 计算两平面的交线。
**變數説明**:
> - other: 另一个平面
**返回**: 两平面的交线
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_intersection_line3(self, other: 'Plane3') -> 'Line3':
"""
计算两平面的交线。
Args:
other: 另一个平面
Returns:
两平面的交线
Raises:
"""
if self.normal.is_parallel(other.normal):
raise ValueError('Planes are parallel and have no intersection.')
direction = self.normal.cross(other.normal)
x, y, z = (0, 0, 0)
if self.a != 0 and other.a != 0:
A = np.array([[self.b, self.c], [other.b, other.c]])
B = np.array([-self.d, -other.d])
y, z = np.linalg.solve(A, B)
elif self.b != 0 and other.b != 0:
A = np.array([[self.a, self.c], [other.a, other.c]])
B = np.array([-self.d, -other.d])
x, z = np.linalg.solve(A, B)
elif self.c != 0 and other.c != 0:
A = np.array([[self.a, self.b], [other.a, other.b]])
B = np.array([-self.d, -other.d])
x, y = np.linalg.solve(A, B)
return Line3(Point3(x, y, z), direction)
```
</details>
### *method* `cal_intersection_point3(self, other: Line3) -> Point3`
**説明**: 计算平面与直线的交点。
**變數説明**:
> - other: 不与平面平行或在平面上的直线
**返回**: 交点
**抛出**:
> - ValueError 平面与直线平行或重合
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_intersection_point3(self, other: 'Line3') -> 'Point3':
"""
计算平面与直线的交点。
Args:
other: 不与平面平行或在平面上的直线
Returns:
交点
Raises:
ValueError: 平面与直线平行或重合
"""
if self.normal @ other.direction == 0:
raise ValueError('The plane and the line are parallel or coincident.')
x, y, z = other.get_parametric_equations()
t = -(self.a * other.point.x + self.b * other.point.y + self.c * other.point.z + self.d) / (self.a * other.direction.x + self.b * other.direction.y + self.c * other.direction.z)
return Point3(x(t), y(t), z(t))
```
</details>
### *method* `cal_parallel_plane3(self, point: Point3) -> Plane3`
**説明**: 计算平行于该平面且过指定点的平面。
**變數説明**:
> - point: 指定点
**返回**: 所求平面
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_parallel_plane3(self, point: 'Point3') -> 'Plane3':
"""
计算平行于该平面且过指定点的平面。
Args:
point: 指定点
Returns:
所求平面
"""
return Plane3.from_point_and_normal(point, self.normal)
```
</details>
### *method* `is_parallel(self, other: Plane3) -> bool`
**説明**: 判断两个平面是否平行。
**變數説明**:
> - other: 另一个平面
**返回**: 是否平行
<details>
<summary> <b>源碼</b> </summary>
```python
def is_parallel(self, other: 'Plane3') -> bool:
"""
判断两个平面是否平行。
Args:
other: 另一个平面
Returns:
是否平行
"""
return self.normal.is_parallel(other.normal)
```
</details>
### `@property`
### *method* `normal(self) -> Vector3`
**説明**: 平面的法向量。
**返回**: 法向量
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def normal(self) -> 'Vector3':
"""
平面的法向量。
Returns:
法向量
"""
return Vector3(self.a, self.b, self.c)
```
</details>
### `@classmethod`
### *method* `from_point_and_normal(cls, point: Point3, normal: Vector3) -> Plane3`
**説明**: 工厂函数 由点和法向量构造平面(点法式构造)。
**變數説明**:
> - point: 平面上的一点
> - normal: 法向量
**返回**: 平面
<details>
<summary> <b>源碼</b> </summary>
```python
@classmethod
def from_point_and_normal(cls, point: 'Point3', normal: 'Vector3') -> 'Plane3':
"""
工厂函数 由点和法向量构造平面(点法式构造)。
Args:
point: 平面上的一点
normal: 法向量
Returns:
平面
"""
a, b, c = (normal.x, normal.y, normal.z)
d = -a * point.x - b * point.y - c * point.z
return cls(a, b, c, d)
```
</details>
### `@classmethod`
### *method* `from_three_points(cls, p1: Point3, p2: Point3, p3: Point3) -> Plane3`
**説明**: 工厂函数 由三点构造平面。
**變數説明**:
> - p1: 点1
> - p2: 点2
> - p3: 点3
**返回**: 平面
<details>
<summary> <b>源碼</b> </summary>
```python
@classmethod
def from_three_points(cls, p1: 'Point3', p2: 'Point3', p3: 'Point3') -> 'Plane3':
"""
工厂函数 由三点构造平面。
Args:
p1: 点1
p2: 点2
p3: 点3
Returns:
平面
"""
v1 = p2 - p1
v2 = p3 - p1
normal = v1.cross(v2)
return cls.from_point_and_normal(p1, normal)
```
</details>
### `@classmethod`
### *method* `from_two_lines(cls, l1: Line3, l2: Line3) -> Plane3`
**説明**: 工厂函数 由两直线构造平面。
**變數説明**:
> - l1: 直线1
> - l2: 直线2
**返回**: 平面
<details>
<summary> <b>源碼</b> </summary>
```python
@classmethod
def from_two_lines(cls, l1: 'Line3', l2: 'Line3') -> 'Plane3':
"""
工厂函数 由两直线构造平面。
Args:
l1: 直线1
l2: 直线2
Returns:
平面
"""
v1 = l1.direction
v2 = l2.point - l1.point
if v2 == zero_vector3:
v2 = l2.get_point(1) - l1.point
return cls.from_point_and_normal(l1.point, v1.cross(v2))
```
</details>
### `@classmethod`
### *method* `from_point_and_line(cls, point: Point3, line: Line3) -> Plane3`
**説明**: 工厂函数 由点和直线构造平面。
**變數説明**:
> - point: 面上一点
> - line: 面上直线,不包含点
**返回**: 平面
<details>
<summary> <b>源碼</b> </summary>
```python
@classmethod
def from_point_and_line(cls, point: 'Point3', line: 'Line3') -> 'Plane3':
"""
工厂函数 由点和直线构造平面。
Args:
point: 面上一点
line: 面上直线,不包含点
Returns:
平面
"""
return cls.from_point_and_normal(point, line.direction)
```
</details>
### `@overload`
### *method* `__and__(self, other: Line3) -> Point3 | None`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __and__(self, other: 'Line3') -> 'Point3 | None':
...
```
</details>
### `@overload`
### *method* `__and__(self, other: Plane3) -> Line3 | None`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __and__(self, other: 'Plane3') -> 'Line3 | None':
...
```
</details>
### *method* `__and__(self, other)`
**説明**: 取两平面的交集(人话:交线)
**變數説明**:
> - other:
**返回**: 不平行平面的交线平面平行返回None
<details>
<summary> <b>源碼</b> </summary>
```python
def __and__(self, other):
"""
取两平面的交集(人话:交线)
Args:
other:
Returns:
不平行平面的交线平面平行返回None
"""
if isinstance(other, Plane3):
if self.normal.is_parallel(other.normal):
return None
return self.cal_intersection_line3(other)
elif isinstance(other, Line3):
if self.normal @ other.direction == 0:
return None
return self.cal_intersection_point3(other)
else:
raise TypeError(f"unsupported operand type(s) for &: 'Plane3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other) -> bool`
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other) -> bool:
return self.approx(other)
```
</details>
### *method* `__rand__(self, other: Line3) -> Point3`
<details>
<summary> <b>源碼</b> </summary>
```python
def __rand__(self, other: 'Line3') -> 'Point3':
return self.cal_intersection_point3(other)
```
</details>

View File

@ -1,176 +0,0 @@
---
title: mbcp.mp_math.point
---
### **class** `Point3`
### *method* `__init__(self, x: float, y: float, z: float)`
**説明**: 笛卡尔坐标系中的点。
**變數説明**:
> - x: x 坐标
> - y: y 坐标
> - z: z 坐标
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
笛卡尔坐标系中的点。
Args:
x: x 坐标
y: y 坐标
z: z 坐标
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Point3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个点是否近似相等。
**變數説明**:
> - other:
> - epsilon:
**返回**: 是否近似相等
<details>
<summary> <b>源碼</b> </summary>
```python
def approx(self, other: 'Point3', epsilon: float=APPROX) -> bool:
"""
判断两个点是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Point3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Point3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**説明**: P + V -> P
P + P -> P
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __add__(self, other):
"""
P + V -> P
P + P -> P
Args:
other:
Returns:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### *method* `__eq__(self, other)`
**説明**: 判断两个点是否相等。
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other):
"""
判断两个点是否相等。
Args:
other:
Returns:
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self - other: Point3 => Vector3`
**説明**: P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __sub__(self, other: 'Point3') -> 'Vector3':
"""
P - P -> V
P - V -> P 已在 :class:`Vector3` 中实现
Args:
other:
Returns:
"""
from .vector import Vector3
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
```
</details>

View File

@ -1,34 +0,0 @@
---
title: mbcp.mp_math.segment
---
### **class** `Segment3`
### *method* `__init__(self, p1: Point3, p2: Point3)`
**説明**: 三维空间中的线段。
:param p1:
:param p2:
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, p1: 'Point3', p2: 'Point3'):
"""
三维空间中的线段。
:param p1:
:param p2:
"""
self.p1 = p1
self.p2 = p2
'方向向量'
self.direction = self.p2 - self.p1
'长度'
self.length = self.direction.length
'中心点'
self.midpoint = Point3((self.p1.x + self.p2.x) / 2, (self.p1.y + self.p2.y) / 2, (self.p1.z + self.p2.z) / 2)
```
</details>

View File

@ -1,200 +0,0 @@
---
title: mbcp.mp_math.utils
---
### *func* `clamp() -> float`
**説明**: 区间限定函数
**變數説明**:
> - x: 待限定的值
> - min_: 最小值
> - max_: 最大值
**返回**: 限制后的值
<details>
<summary> <b>源碼</b> </summary>
```python
def clamp(x: float, min_: float, max_: float) -> float:
"""
区间限定函数
Args:
x: 待限定的值
min_: 最小值
max_: 最大值
Returns:
限制后的值
"""
return max(min(x, max_), min_)
```
</details>
### *func* `approx(x: float = 0.0, y: float = APPROX) -> bool`
**説明**: 判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
**變數説明**:
> - x: 数1
> - y: 数2
> - epsilon: 误差
**返回**: 是否近似相等
<details>
<summary> <b>源碼</b> </summary>
```python
def approx(x: float, y: float=0.0, epsilon: float=APPROX) -> bool:
"""
判断两个数是否近似相等。或包装一个实数用于判断是否近似于0。
Args:
x: 数1
y: 数2
epsilon: 误差
Returns:
是否近似相等
"""
return abs(x - y) < epsilon
```
</details>
### *func* `sign(x: float = False) -> str`
**説明**: 获取数的符号。
**變數説明**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**返回**: 符号 + - ""
<details>
<summary> <b>源碼</b> </summary>
```python
def sign(x: float, only_neg: bool=False) -> str:
"""获取数的符号。
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return '+' if not only_neg else ''
elif x < 0:
return '-'
else:
return ''
```
</details>
### *func* `sign_format(x: float = False) -> str`
**説明**: 格式化符号数
-1 -> -1
1 -> +1
0 -> ""
**變數説明**:
> - x: 数
> - only_neg: 是否只返回负数的符号
**返回**: 符号 + - ""
<details>
<summary> <b>源碼</b> </summary>
```python
def sign_format(x: float, only_neg: bool=False) -> str:
"""格式化符号数
-1 -> -1
1 -> +1
0 -> ""
Args:
x: 数
only_neg: 是否只返回负数的符号
Returns:
符号 + - ""
"""
if x > 0:
return f'+{x}' if not only_neg else f'{x}'
elif x < 0:
return f'-{abs(x)}'
else:
return ''
```
</details>
### **class** `Approx`
### *method* `__init__(self, value: RealNumber)`
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, value: RealNumber):
self.value = value
```
</details>
### *method* `__eq__(self, other)`
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other):
if isinstance(self.value, (float, int)):
if isinstance(other, (float, int)):
return abs(self.value - other) < APPROX
else:
self.raise_type_error(other)
elif isinstance(self.value, Vector3):
if isinstance(other, (Vector3, Point3, Plane3, Line3)):
return all([approx(self.value.x, other.x), approx(self.value.y, other.y), approx(self.value.z, other.z)])
else:
self.raise_type_error(other)
```
</details>
### *method* `raise_type_error(self, other)`
<details>
<summary> <b>源碼</b> </summary>
```python
def raise_type_error(self, other):
raise TypeError(f'Unsupported type: {type(self.value)} and {type(other)}')
```
</details>
### *method* `__ne__(self, other)`
<details>
<summary> <b>源碼</b> </summary>
```python
def __ne__(self, other):
return not self.__eq__(other)
```
</details>

View File

@ -1,656 +0,0 @@
---
title: mbcp.mp_math.vector
---
### **class** `Vector3`
### *method* `__init__(self, x: float, y: float, z: float)`
**説明**: 3维向量
**變數説明**:
> - x: x轴分量
> - y: y轴分量
> - z: z轴分量
<details>
<summary> <b>源碼</b> </summary>
```python
def __init__(self, x: float, y: float, z: float):
"""
3维向量
Args:
x: x轴分量
y: y轴分量
z: z轴分量
"""
self.x = x
self.y = y
self.z = z
```
</details>
### *method* `approx(self, other: Vector3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个向量是否近似相等。
**變數説明**:
> - other:
> - epsilon:
**返回**: 是否近似相等
<details>
<summary> <b>源碼</b> </summary>
```python
def approx(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似相等。
Args:
other:
epsilon:
Returns:
是否近似相等
"""
return all([abs(self.x - other.x) < epsilon, abs(self.y - other.y) < epsilon, abs(self.z - other.z) < epsilon])
```
</details>
### *method* `cal_angle(self, other: Vector3) -> AnyAngle`
**説明**: 计算两个向量之间的夹角。
**變數説明**:
> - other: 另一个向量
**返回**: 夹角
<details>
<summary> <b>源碼</b> </summary>
```python
def cal_angle(self, other: 'Vector3') -> 'AnyAngle':
"""
计算两个向量之间的夹角。
Args:
other: 另一个向量
Returns:
夹角
"""
return AnyAngle(math.acos(self @ other / (self.length * other.length)), is_radian=True)
```
</details>
### *method* `cross(self, other: Vector3) -> Vector3`
**説明**: 向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
**變數説明**:
> - other:
**返回**: 行列式的结果
<details>
<summary> <b>源碼</b> </summary>
```python
def cross(self, other: 'Vector3') -> 'Vector3':
"""
向量积 叉乘v1 cross v2 -> v3
叉乘为0则两向量平行。
其余结果的模为平行四边形的面积。
返回如下行列式的结果:
``i j k``
``x1 y1 z1``
``x2 y2 z2``
Args:
other:
Returns:
行列式的结果
"""
return Vector3(self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x)
```
</details>
### *method* `is_approx_parallel(self, other: Vector3, epsilon: float = APPROX) -> bool`
**説明**: 判断两个向量是否近似平行。
**變數説明**:
> - other: 另一个向量
> - epsilon: 允许的误差
**返回**: 是否近似平行
<details>
<summary> <b>源碼</b> </summary>
```python
def is_approx_parallel(self, other: 'Vector3', epsilon: float=APPROX) -> bool:
"""
判断两个向量是否近似平行。
Args:
other: 另一个向量
epsilon: 允许的误差
Returns:
是否近似平行
"""
return self.cross(other).length < epsilon
```
</details>
### *method* `is_parallel(self, other: Vector3) -> bool`
**説明**: 判断两个向量是否平行。
**變數説明**:
> - other: 另一个向量
**返回**: 是否平行
<details>
<summary> <b>源碼</b> </summary>
```python
def is_parallel(self, other: 'Vector3') -> bool:
"""
判断两个向量是否平行。
Args:
other: 另一个向量
Returns:
是否平行
"""
return self.cross(other).approx(zero_vector3)
```
</details>
### *method* `normalize(self)`
**説明**: 将向量归一化。
自体归一化,不返回值。
<details>
<summary> <b>源碼</b> </summary>
```python
def normalize(self):
"""
将向量归一化。
自体归一化,不返回值。
"""
length = self.length
self.x /= length
self.y /= length
self.z /= length
```
</details>
### `@property`
### *method* `np_array(self) -> np.ndarray`
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def np_array(self) -> 'np.ndarray':
"""
返回numpy数组
Returns:
"""
return np.array([self.x, self.y, self.z])
```
</details>
### `@property`
### *method* `length(self) -> float`
**説明**: 向量的模。
**返回**: 模
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def length(self) -> float:
"""
向量的模。
Returns:
"""
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
```
</details>
### `@property`
### *method* `unit(self) -> Vector3`
**説明**: 获取该向量的单位向量。
**返回**: 单位向量
<details>
<summary> <b>源碼</b> </summary>
```python
@property
def unit(self) -> 'Vector3':
"""
获取该向量的单位向量。
Returns:
单位向量
"""
return self / self.length
```
</details>
### *method* `__abs__(self)`
<details>
<summary> <b>源碼</b> </summary>
```python
def __abs__(self):
return self.length
```
</details>
### `@overload`
### *method* `self + other: Vector3 => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __add__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self + other: Point3 => Point3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __add__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self + other`
**説明**: V + P -> P
V + V -> V
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __add__(self, other):
"""
V + P -> P
V + V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x + other.x, self.y + other.y, self.z + other.z)
elif isinstance(other, Point3):
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
else:
raise TypeError(f"unsupported operand type(s) for +: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `__eq__(self, other)`
**説明**: 判断两个向量是否相等。
**變數説明**:
> - other:
**返回**: 是否相等
<details>
<summary> <b>源碼</b> </summary>
```python
def __eq__(self, other):
"""
判断两个向量是否相等。
Args:
other:
Returns:
是否相等
"""
return approx(self.x, other.x) and approx(self.y, other.y) and approx(self.z, other.z)
```
</details>
### *method* `self + other: Point3 => Point3`
**説明**: P + V -> P
别去点那边实现了。
:param other:
:return:
<details>
<summary> <b>源碼</b> </summary>
```python
def __radd__(self, other: 'Point3') -> 'Point3':
"""
P + V -> P
别去点那边实现了。
:param other:
:return:
"""
return Point3(self.x + other.x, self.y + other.y, self.z + other.z)
```
</details>
### `@overload`
### *method* `self - other: Vector3 => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __sub__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self - other: Point3 => Point3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __sub__(self, other: 'Point3') -> 'Point3':
...
```
</details>
### *method* `self - other`
**説明**: V - P -> P
V - V -> V
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __sub__(self, other):
"""
V - P -> P
V - V -> V
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x - other.x, self.y - other.y, self.z - other.z)
elif isinstance(other, Point3):
return Point3(self.x - other.x, self.y - other.y, self.z - other.z)
else:
raise TypeError(f'unsupported operand type(s) for -: "Vector3" and "{type(other)}"')
```
</details>
### *method* `self - other: Point3`
**説明**: P - V -> P
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __rsub__(self, other: 'Point3'):
"""
P - V -> P
Args:
other:
Returns:
"""
if isinstance(other, Point3):
return Point3(other.x - self.x, other.y - self.y, other.z - self.z)
else:
raise TypeError(f"unsupported operand type(s) for -: '{type(other)}' and 'Vector3'")
```
</details>
### `@overload`
### *method* `self * other: Vector3 => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __mul__(self, other: 'Vector3') -> 'Vector3':
...
```
</details>
### `@overload`
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
@overload
def __mul__(self, other: RealNumber) -> 'Vector3':
...
```
</details>
### *method* `self * other: int | float | Vector3 => Vector3`
**説明**: 数组运算 非点乘。点乘使用@叉乘使用cross。
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __mul__(self, other: 'int | float | Vector3') -> 'Vector3':
"""
数组运算 非点乘。点乘使用@叉乘使用cross。
Args:
other:
Returns:
"""
if isinstance(other, Vector3):
return Vector3(self.x * other.x, self.y * other.y, self.z * other.z)
elif isinstance(other, (float, int)):
return Vector3(self.x * other, self.y * other, self.z * other)
else:
raise TypeError(f"unsupported operand type(s) for *: 'Vector3' and '{type(other)}'")
```
</details>
### *method* `self * other: RealNumber => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
def __rmul__(self, other: 'RealNumber') -> 'Vector3':
return self.__mul__(other)
```
</details>
### *method* `self @ other: Vector3 => RealNumber`
**説明**: 点乘。
**變數説明**:
> - other:
<details>
<summary> <b>源碼</b> </summary>
```python
def __matmul__(self, other: 'Vector3') -> 'RealNumber':
"""
点乘。
Args:
other:
Returns:
"""
return self.x * other.x + self.y * other.y + self.z * other.z
```
</details>
### *method* `self / other: RealNumber => Vector3`
<details>
<summary> <b>源碼</b> </summary>
```python
def __truediv__(self, other: RealNumber) -> 'Vector3':
return Vector3(self.x / other, self.y / other, self.z / other)
```
</details>
### *method* `- self`
<details>
<summary> <b>源碼</b> </summary>
```python
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
```
</details>
### ***var*** `zero_vector3 = Vector3(0, 0, 0)`
- **類型**: `Vector3`
- **説明**: 零向量
### ***var*** `x_axis = Vector3(1, 0, 0)`
- **類型**: `Vector3`
- **説明**: x轴单位向量
### ***var*** `y_axis = Vector3(0, 1, 0)`
- **類型**: `Vector3`
- **説明**: y轴单位向量
### ***var*** `z_axis = Vector3(0, 0, 1)`
- **類型**: `Vector3`
- **説明**: z轴单位向量

View File

@ -1,3 +0,0 @@
---
title: mbcp.particle
---

View File

@ -1,3 +0,0 @@
---
title: mbcp.presets
---

View File

@ -1,43 +0,0 @@
---
title: mbcp.presets.model
---
### **class** `GeometricModels`
### `@staticmethod`
### *method* `sphere(radius: float, density: float)`
**説明**: 生成球体上的点集。
**變數説明**:
> - radius:
> - density:
**返回**: List[Point3]: 球体上的点集。
<details>
<summary> <b>源碼</b> </summary>
```python
@staticmethod
def sphere(radius: float, density: float):
"""
生成球体上的点集。
Args:
radius:
density:
Returns:
List[Point3]: 球体上的点集。
"""
area = 4 * np.pi * radius ** 2
num = int(area * density)
phi_list = np.arccos([clamp(-1 + (2.0 * _ - 1.0) / num, -1, 1) for _ in range(num)])
theta_list = np.sqrt(num * np.pi) * phi_list
x_array = radius * np.sin(phi_list) * np.cos(theta_list)
y_array = radius * np.sin(phi_list) * np.sin(theta_list)
z_array = radius * np.cos(phi_list)
return [Point3(x_array[i], y_array[i], z_array[i]) for i in range(num)]
```
</details>