mbcp/docs/zht/api/mp_math/equation.md

152 lines
3.6 KiB
Markdown
Raw Normal View History

---
title: mbcp.mp_math.equation
---
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
2024-08-29 13:46:59 +08:00
**説明**: 求N元函数一阶偏导函数。这玩意不太稳定慎用。
2024-08-29 13:46:59 +08:00
**變數説明**:
> - func: 函数
> - var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
> - epsilon: 偏移量
2024-08-29 15:05:02 +08:00
**返回**: 偏导函数
**抛出**:
2024-08-29 13:46:59 +08:00
> - ValueError 无效变量类型
<details>
2024-08-29 13:46:59 +08:00
<summary> <b>源碼</b> </summary>
```python
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
"""
求N元函数一阶偏导函数。这玩意不太稳定慎用。
Args:
func: 函数
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
epsilon: 偏移量
Returns:
偏导函数
Raises:
ValueError: 无效变量类型
"""
if isinstance(var, int):
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
return partial_derivative_func
elif isinstance(var, tuple):
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
return high_order_partial_derivative_func
else:
raise ValueError('Invalid var type')
```
</details>
### *func* `partial_derivative_func() -> Var`
<details>
2024-08-29 13:46:59 +08:00
<summary> <b>源碼</b> </summary>
```python
def partial_derivative_func(*args: Var) -> Var:
args_list_plus = list(args)
args_list_plus[var] += epsilon
args_list_minus = list(args)
args_list_minus[var] -= epsilon
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
```
</details>
### *func* `high_order_partial_derivative_func() -> Var`
<details>
2024-08-29 13:46:59 +08:00
<summary> <b>源碼</b> </summary>
```python
def high_order_partial_derivative_func(*args: Var) -> Var:
result_func = func
for v in var:
result_func = get_partial_derivative_func(result_func, v, epsilon)
return result_func(*args)
```
</details>
### **class** `CurveEquation`
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
2024-08-29 13:46:59 +08:00
**説明**: 曲线方程。
2024-08-29 13:46:59 +08:00
**變數説明**:
> - x_func: x函数
> - y_func: y函数
> - z_func: z函数
<details>
2024-08-29 13:46:59 +08:00
<summary> <b>源碼</b> </summary>
```python
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
"""
曲线方程。
Args:
x_func: x函数
y_func: y函数
z_func: z函数
"""
self.x_func = x_func
self.y_func = y_func
self.z_func = z_func
```
</details>
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
2024-08-29 13:46:59 +08:00
**説明**: 计算曲线上的点。
2024-08-29 13:46:59 +08:00
**變數説明**:
> - *t:
> - 参数:
<details>
2024-08-29 13:46:59 +08:00
<summary> <b>源碼</b> </summary>
```python
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
"""
计算曲线上的点。
Args:
*t:
参数
Returns:
"""
if len(t) == 1:
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
else:
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
```
</details>