mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-30 09:04:56 +08:00
582 lines
11 KiB
Markdown
582 lines
11 KiB
Markdown
|
---
|
|||
|
title: mbcp.mp_math.line
|
|||
|
---
|
|||
|
### **class** `Line3`
|
|||
|
### *method* `__init__(self, point: Point3, direction: Vector3)`
|
|||
|
|
|||
|
|
|||
|
三维空间中的直线。由一个点和一个方向向量确定。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- point: 直线上的一点
|
|||
|
|
|||
|
- direction: 直线的方向向量
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def __init__(self, point: 'Point3', direction: 'Vector3'):
|
|||
|
"""
|
|||
|
三维空间中的直线。由一个点和一个方向向量确定。
|
|||
|
Args:
|
|||
|
point: 直线上的一点
|
|||
|
direction: 直线的方向向量
|
|||
|
"""
|
|||
|
self.point = point
|
|||
|
self.direction = direction
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `approx(self, other: Line3, epsilon: float = APPROX) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否近似相等。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
- epsilon: 误差
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否近似相等
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def approx(self, other: 'Line3', epsilon: float=APPROX) -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否近似相等。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
epsilon: 误差
|
|||
|
Returns:
|
|||
|
是否近似相等
|
|||
|
"""
|
|||
|
return self.is_approx_parallel(other, epsilon) and (self.point - other.point).is_approx_parallel(self.direction, epsilon)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `cal_angle(self, other: Line3) -> AnyAngle`
|
|||
|
|
|||
|
|
|||
|
计算直线和直线之间的夹角。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 夹角弧度
|
|||
|
|
|||
|
**Raises**:
|
|||
|
|
|||
|
- TypeError 不支持的类型
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def cal_angle(self, other: 'Line3') -> 'AnyAngle':
|
|||
|
"""
|
|||
|
计算直线和直线之间的夹角。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
夹角弧度
|
|||
|
Raises:
|
|||
|
TypeError: 不支持的类型
|
|||
|
"""
|
|||
|
return self.direction.cal_angle(other.direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `cal_distance(self, other: Line3 | Point3) -> float`
|
|||
|
|
|||
|
|
|||
|
计算直线和直线或点之间的距离。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 平行直线或点
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 距离
|
|||
|
|
|||
|
**Raises**:
|
|||
|
|
|||
|
- TypeError 不支持的类型
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def cal_distance(self, other: 'Line3 | Point3') -> float:
|
|||
|
"""
|
|||
|
计算直线和直线或点之间的距离。
|
|||
|
Args:
|
|||
|
other: 平行直线或点
|
|||
|
|
|||
|
Returns:
|
|||
|
距离
|
|||
|
Raises:
|
|||
|
TypeError: 不支持的类型
|
|||
|
"""
|
|||
|
if isinstance(other, Line3):
|
|||
|
if self == other:
|
|||
|
return 0
|
|||
|
elif self.is_parallel(other):
|
|||
|
return (other.point - self.point).cross(self.direction).length / self.direction.length
|
|||
|
elif not self.is_coplanar(other):
|
|||
|
return abs(self.direction.cross(other.direction) @ (self.point - other.point) / self.direction.cross(other.direction).length)
|
|||
|
else:
|
|||
|
return 0
|
|||
|
elif isinstance(other, Point3):
|
|||
|
return (other - self.point).cross(self.direction).length / self.direction.length
|
|||
|
else:
|
|||
|
raise TypeError('Unsupported type.')
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `cal_intersection(self, other: Line3) -> Point3`
|
|||
|
|
|||
|
|
|||
|
计算两条直线的交点。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 交点
|
|||
|
|
|||
|
**Raises**:
|
|||
|
|
|||
|
- ValueError 直线平行
|
|||
|
|
|||
|
- ValueError 直线不共面
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def cal_intersection(self, other: 'Line3') -> 'Point3':
|
|||
|
"""
|
|||
|
计算两条直线的交点。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
交点
|
|||
|
Raises:
|
|||
|
ValueError: 直线平行
|
|||
|
ValueError: 直线不共面
|
|||
|
"""
|
|||
|
if self.is_parallel(other):
|
|||
|
raise ValueError('Lines are parallel and do not intersect.')
|
|||
|
if not self.is_coplanar(other):
|
|||
|
raise ValueError('Lines are not coplanar and do not intersect.')
|
|||
|
return self.point + self.direction.cross(other.direction) @ other.direction.cross(self.point - other.point) / self.direction.cross(other.direction).length ** 2 * self.direction
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `cal_perpendicular(self, point: Point3) -> Line3`
|
|||
|
|
|||
|
|
|||
|
计算直线经过指定点p的垂线。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- point: 指定点
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 垂线
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def cal_perpendicular(self, point: 'Point3') -> 'Line3':
|
|||
|
"""
|
|||
|
计算直线经过指定点p的垂线。
|
|||
|
Args:
|
|||
|
point: 指定点
|
|||
|
Returns:
|
|||
|
垂线
|
|||
|
"""
|
|||
|
return Line3(point, self.direction.cross(point - self.point))
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `get_point(self, t: RealNumber) -> Point3`
|
|||
|
|
|||
|
|
|||
|
获取直线上的点。同一条直线,但起始点和方向向量不同,则同一个t对应的点不同。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- t: 参数t
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 点
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def get_point(self, t: RealNumber) -> 'Point3':
|
|||
|
"""
|
|||
|
获取直线上的点。同一条直线,但起始点和方向向量不同,则同一个t对应的点不同。
|
|||
|
Args:
|
|||
|
t: 参数t
|
|||
|
Returns:
|
|||
|
点
|
|||
|
"""
|
|||
|
return self.point + t * self.direction
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`
|
|||
|
|
|||
|
|
|||
|
获取直线的参数方程。
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- x(t), y(t), z(t)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def get_parametric_equations(self) -> tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:
|
|||
|
"""
|
|||
|
获取直线的参数方程。
|
|||
|
Returns:
|
|||
|
x(t), y(t), z(t)
|
|||
|
"""
|
|||
|
return (lambda t: self.point.x + self.direction.x * t, lambda t: self.point.y + self.direction.y * t, lambda t: self.point.z + self.direction.z * t)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否近似平行。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
- epsilon: 误差
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否近似平行
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def is_approx_parallel(self, other: 'Line3', epsilon: float=1e-06) -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否近似平行。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
epsilon: 误差
|
|||
|
Returns:
|
|||
|
是否近似平行
|
|||
|
"""
|
|||
|
return self.direction.is_approx_parallel(other.direction, epsilon)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `is_parallel(self, other: Line3) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否平行。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否平行
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def is_parallel(self, other: 'Line3') -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否平行。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
是否平行
|
|||
|
"""
|
|||
|
return self.direction.is_parallel(other.direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `is_collinear(self, other: Line3) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否共线。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否共线
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def is_collinear(self, other: 'Line3') -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否共线。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
是否共线
|
|||
|
"""
|
|||
|
return self.is_parallel(other) and (self.point - other.point).is_parallel(self.direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `is_point_on(self, point: Point3) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断点是否在直线上。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- point: 点
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否在直线上
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def is_point_on(self, point: 'Point3') -> bool:
|
|||
|
"""
|
|||
|
判断点是否在直线上。
|
|||
|
Args:
|
|||
|
point: 点
|
|||
|
Returns:
|
|||
|
是否在直线上
|
|||
|
"""
|
|||
|
return (point - self.point).is_parallel(self.direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `is_coplanar(self, other: Line3) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否共面。
|
|||
|
充要条件:两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 是否共面
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def is_coplanar(self, other: 'Line3') -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否共面。
|
|||
|
充要条件:两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
是否共面
|
|||
|
"""
|
|||
|
return self.direction.cross(other.direction) @ (self.point - other.point) == 0
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `simplify(self)`
|
|||
|
|
|||
|
|
|||
|
简化直线方程,等价相等。
|
|||
|
自体简化,不返回值。
|
|||
|
|
|||
|
按照可行性一次对x y z 化 0 处理,并对向量单位化
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def simplify(self):
|
|||
|
"""
|
|||
|
简化直线方程,等价相等。
|
|||
|
自体简化,不返回值。
|
|||
|
|
|||
|
按照可行性一次对x y z 化 0 处理,并对向量单位化
|
|||
|
"""
|
|||
|
self.direction.normalize()
|
|||
|
if self.direction.x == 0:
|
|||
|
self.point.x = 0
|
|||
|
if self.direction.y == 0:
|
|||
|
self.point.y = 0
|
|||
|
if self.direction.z == 0:
|
|||
|
self.point.z = 0
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### `@classmethod`
|
|||
|
### *method* `from_two_points(cls, p1: Point3, p2: Point3) -> Line3`
|
|||
|
|
|||
|
|
|||
|
工厂函数 由两点构造直线。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- p1: 点1
|
|||
|
|
|||
|
- p2: 点2
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 直线
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
@classmethod
|
|||
|
def from_two_points(cls, p1: 'Point3', p2: 'Point3') -> 'Line3':
|
|||
|
"""
|
|||
|
工厂函数 由两点构造直线。
|
|||
|
Args:
|
|||
|
p1: 点1
|
|||
|
p2: 点2
|
|||
|
Returns:
|
|||
|
直线
|
|||
|
"""
|
|||
|
direction = p2 - p1
|
|||
|
return cls(p1, direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `__and__(self, other: Line3) -> Line3 | Point3 | None`
|
|||
|
|
|||
|
|
|||
|
计算两条直线点集合的交集。重合线返回自身,平行线返回None,交线返回交点。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other: 另一条直线
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 交点
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def __and__(self, other: 'Line3') -> 'Line3 | Point3 | None':
|
|||
|
"""
|
|||
|
计算两条直线点集合的交集。重合线返回自身,平行线返回None,交线返回交点。
|
|||
|
Args:
|
|||
|
other: 另一条直线
|
|||
|
Returns:
|
|||
|
交点
|
|||
|
"""
|
|||
|
if self.is_collinear(other):
|
|||
|
return self
|
|||
|
elif self.is_parallel(other) or not self.is_coplanar(other):
|
|||
|
return None
|
|||
|
else:
|
|||
|
return self.cal_intersection(other)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `__eq__(self, other) -> bool`
|
|||
|
|
|||
|
|
|||
|
判断两条直线是否等价。
|
|||
|
|
|||
|
v1 // v2 ∧ (p1 - p2) // v1
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- other:
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def __eq__(self, other) -> bool:
|
|||
|
"""
|
|||
|
判断两条直线是否等价。
|
|||
|
|
|||
|
v1 // v2 ∧ (p1 - p2) // v1
|
|||
|
Args:
|
|||
|
other:
|
|||
|
|
|||
|
Returns:
|
|||
|
|
|||
|
"""
|
|||
|
return self.direction.is_parallel(other.direction) and (self.point - other.point).is_parallel(self.direction)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|