mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-26 13:03:18 +08:00
c621a250a7
Count phrases in matchingWords and maxMatchingWords
486 lines
20 KiB
Rust
486 lines
20 KiB
Rust
use std::cmp::Ordering;
|
|
use std::collections::BTreeMap;
|
|
use std::hash::{Hash, Hasher};
|
|
|
|
use fxhash::{FxHashMap, FxHasher};
|
|
|
|
use super::interner::{FixedSizeInterner, Interned};
|
|
use super::query_term::{
|
|
self, number_of_typos_allowed, LocatedQueryTerm, LocatedQueryTermSubset, QueryTermSubset,
|
|
};
|
|
use super::small_bitmap::SmallBitmap;
|
|
use super::SearchContext;
|
|
use crate::search::new::interner::Interner;
|
|
use crate::Result;
|
|
|
|
/// A node of the [`QueryGraph`].
|
|
///
|
|
/// There are four types of nodes:
|
|
/// 1. `Start` : unique, represents the start of the query
|
|
/// 2. `End` : unique, represents the end of a query
|
|
/// 3. `Deleted` : represents a node that was deleted.
|
|
/// All deleted nodes are unreachable from the start node.
|
|
/// 4. `Term` is a regular node representing a word or combination of words
|
|
/// from the user query.
|
|
#[derive(Clone)]
|
|
pub struct QueryNode {
|
|
pub data: QueryNodeData,
|
|
pub predecessors: SmallBitmap<QueryNode>,
|
|
pub successors: SmallBitmap<QueryNode>,
|
|
}
|
|
#[derive(Clone, PartialEq, Eq, Hash)]
|
|
pub enum QueryNodeData {
|
|
Term(LocatedQueryTermSubset),
|
|
Deleted,
|
|
Start,
|
|
End,
|
|
}
|
|
|
|
/**
|
|
A graph representing all the ways to interpret the user's search query.
|
|
|
|
## Example 1
|
|
For the search query `sunflower`, we need to register the following things:
|
|
- we need to look for the exact word `sunflower`
|
|
- but also any word which is 1 or 2 typos apart from `sunflower`
|
|
- and every word that contains the prefix `sunflower`
|
|
- and also the couple of adjacent words `sun flower`
|
|
- as well as all the user-defined synonyms of `sunflower`
|
|
|
|
All these derivations of a word will be stored in [`QueryTerm`].
|
|
|
|
## Example 2:
|
|
For the search query `summer house by`.
|
|
|
|
We also look for all word derivations of each term. And we also need to consider
|
|
the potential n-grams `summerhouse`, `summerhouseby`, and `houseby`.
|
|
Furthermore, we need to know which words these ngrams replace. This is done by creating the
|
|
following graph, where each node also contains a list of derivations:
|
|
```txt
|
|
┌───────┐
|
|
┌─│houseby│─────────┐
|
|
│ └───────┘ │
|
|
┌───────┐ ┌───────┐ │ ┌───────┐ ┌────┐ │ ┌───────┐
|
|
│ START │─┬─│summer │─┴─│ house │┌─│ by │─┼─│ END │
|
|
└───────┘ │ └───────┘ └───────┘│ └────┘ │ └───────┘
|
|
│ ┌────────────┐ │ │
|
|
├─│summerhouse │───────┘ │
|
|
│ └────────────┘ │
|
|
│ ┌─────────────┐ │
|
|
└─────────│summerhouseby│───────┘
|
|
└─────────────┘
|
|
```
|
|
Note also that each node has a range of positions associated with it,
|
|
such that `summer` is known to be a word at the positions `0..=0` and `houseby`
|
|
is registered with the positions `1..=2`. When two nodes are connected by an edge,
|
|
it means that they are potentially next to each other in the user's search query
|
|
(depending on the [`TermsMatchingStrategy`](crate::search::TermsMatchingStrategy)
|
|
and the transformations that were done on the query graph).
|
|
*/
|
|
#[derive(Clone)]
|
|
pub struct QueryGraph {
|
|
/// The index of the start node within `self.nodes`
|
|
pub root_node: Interned<QueryNode>,
|
|
/// The index of the end node within `self.nodes`
|
|
pub end_node: Interned<QueryNode>,
|
|
/// The list of all query nodes
|
|
pub nodes: FixedSizeInterner<QueryNode>,
|
|
}
|
|
|
|
impl QueryGraph {
|
|
/// Build the query graph from the parsed user search query, return an updated list of the located query terms
|
|
/// which contains ngrams.
|
|
pub fn from_query(
|
|
ctx: &mut SearchContext,
|
|
// The terms here must be consecutive
|
|
terms: &[LocatedQueryTerm],
|
|
) -> Result<(QueryGraph, Vec<LocatedQueryTerm>)> {
|
|
let mut new_located_query_terms = terms.to_vec();
|
|
|
|
let nbr_typos = number_of_typos_allowed(ctx)?;
|
|
|
|
let mut nodes_data: Vec<QueryNodeData> = vec![QueryNodeData::Start, QueryNodeData::End];
|
|
let root_node = 0;
|
|
let end_node = 1;
|
|
|
|
// Ee could consider generalizing to 4,5,6,7,etc. ngrams
|
|
let (mut prev2, mut prev1, mut prev0): (Vec<u16>, Vec<u16>, Vec<u16>) =
|
|
(vec![], vec![], vec![root_node]);
|
|
|
|
let original_terms_len = terms.len();
|
|
for term_idx in 0..original_terms_len {
|
|
let mut new_nodes = vec![];
|
|
|
|
let new_node_idx = add_node(
|
|
&mut nodes_data,
|
|
QueryNodeData::Term(LocatedQueryTermSubset {
|
|
term_subset: QueryTermSubset::full(terms[term_idx].value),
|
|
positions: terms[term_idx].positions.clone(),
|
|
term_ids: term_idx as u8..=term_idx as u8,
|
|
}),
|
|
);
|
|
new_nodes.push(new_node_idx);
|
|
|
|
if !prev1.is_empty() {
|
|
if let Some(ngram) =
|
|
query_term::make_ngram(ctx, &terms[term_idx - 1..=term_idx], &nbr_typos)?
|
|
{
|
|
new_located_query_terms.push(ngram.clone());
|
|
let ngram_idx = add_node(
|
|
&mut nodes_data,
|
|
QueryNodeData::Term(LocatedQueryTermSubset {
|
|
term_subset: QueryTermSubset::full(ngram.value),
|
|
positions: ngram.positions,
|
|
term_ids: term_idx as u8 - 1..=term_idx as u8,
|
|
}),
|
|
);
|
|
new_nodes.push(ngram_idx);
|
|
}
|
|
}
|
|
if !prev2.is_empty() {
|
|
if let Some(ngram) =
|
|
query_term::make_ngram(ctx, &terms[term_idx - 2..=term_idx], &nbr_typos)?
|
|
{
|
|
new_located_query_terms.push(ngram.clone());
|
|
let ngram_idx = add_node(
|
|
&mut nodes_data,
|
|
QueryNodeData::Term(LocatedQueryTermSubset {
|
|
term_subset: QueryTermSubset::full(ngram.value),
|
|
positions: ngram.positions,
|
|
term_ids: term_idx as u8 - 2..=term_idx as u8,
|
|
}),
|
|
);
|
|
new_nodes.push(ngram_idx);
|
|
}
|
|
}
|
|
(prev0, prev1, prev2) = (new_nodes, prev0, prev1);
|
|
}
|
|
|
|
let root_node = Interned::from_raw(root_node);
|
|
let end_node = Interned::from_raw(end_node);
|
|
let mut nodes = FixedSizeInterner::new(
|
|
nodes_data.len() as u16,
|
|
QueryNode {
|
|
data: QueryNodeData::Deleted,
|
|
predecessors: SmallBitmap::new(nodes_data.len() as u16),
|
|
successors: SmallBitmap::new(nodes_data.len() as u16),
|
|
},
|
|
);
|
|
for (node_idx, node_data) in nodes_data.into_iter().enumerate() {
|
|
let node = nodes.get_mut(Interned::from_raw(node_idx as u16));
|
|
node.data = node_data;
|
|
}
|
|
let mut graph = QueryGraph { root_node, end_node, nodes };
|
|
graph.build_initial_edges();
|
|
|
|
Ok((graph, new_located_query_terms))
|
|
}
|
|
|
|
/// Remove the given nodes, connecting all their predecessors to all their successors.
|
|
pub fn remove_nodes_keep_edges(&mut self, nodes: &[Interned<QueryNode>]) {
|
|
for &node_id in nodes {
|
|
let node = self.nodes.get(node_id);
|
|
let old_node_pred = node.predecessors.clone();
|
|
let old_node_succ = node.successors.clone();
|
|
for pred in old_node_pred.iter() {
|
|
let pred_successors = &mut self.nodes.get_mut(pred).successors;
|
|
pred_successors.remove(node_id);
|
|
pred_successors.union(&old_node_succ);
|
|
}
|
|
for succ in old_node_succ.iter() {
|
|
let succ_predecessors = &mut self.nodes.get_mut(succ).predecessors;
|
|
succ_predecessors.remove(node_id);
|
|
succ_predecessors.union(&old_node_pred);
|
|
}
|
|
let node = self.nodes.get_mut(node_id);
|
|
node.data = QueryNodeData::Deleted;
|
|
node.predecessors.clear();
|
|
node.successors.clear();
|
|
}
|
|
}
|
|
|
|
/// Remove the given nodes and all their edges from the query graph.
|
|
pub fn remove_nodes(&mut self, nodes: &[Interned<QueryNode>]) {
|
|
for &node_id in nodes {
|
|
let node = &self.nodes.get(node_id);
|
|
let old_node_pred = node.predecessors.clone();
|
|
let old_node_succ = node.successors.clone();
|
|
|
|
for pred in old_node_pred.iter() {
|
|
self.nodes.get_mut(pred).successors.remove(node_id);
|
|
}
|
|
for succ in old_node_succ.iter() {
|
|
self.nodes.get_mut(succ).predecessors.remove(node_id);
|
|
}
|
|
|
|
let node = self.nodes.get_mut(node_id);
|
|
node.data = QueryNodeData::Deleted;
|
|
node.predecessors.clear();
|
|
node.successors.clear();
|
|
}
|
|
}
|
|
/// Simplify the query graph by removing all nodes that are disconnected from
|
|
/// the start or end nodes.
|
|
pub fn simplify(&mut self) {
|
|
loop {
|
|
let mut nodes_to_remove = vec![];
|
|
for (node_idx, node) in self.nodes.iter() {
|
|
if (!matches!(node.data, QueryNodeData::End | QueryNodeData::Deleted)
|
|
&& node.successors.is_empty())
|
|
|| (!matches!(node.data, QueryNodeData::Start | QueryNodeData::Deleted)
|
|
&& node.predecessors.is_empty())
|
|
{
|
|
nodes_to_remove.push(node_idx);
|
|
}
|
|
}
|
|
if nodes_to_remove.is_empty() {
|
|
break;
|
|
} else {
|
|
self.remove_nodes(&nodes_to_remove);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_initial_edges(&mut self) {
|
|
for (_, node) in self.nodes.iter_mut() {
|
|
node.successors.clear();
|
|
node.predecessors.clear();
|
|
}
|
|
for node_id in self.nodes.indexes() {
|
|
let node = self.nodes.get(node_id);
|
|
let end_prev_term_id = match &node.data {
|
|
QueryNodeData::Term(term) => *term.term_ids.end() as i16,
|
|
QueryNodeData::Start => -1,
|
|
QueryNodeData::Deleted => continue,
|
|
QueryNodeData::End => continue,
|
|
};
|
|
let successors = {
|
|
let mut successors = SmallBitmap::for_interned_values_in(&self.nodes);
|
|
let mut min = i16::MAX;
|
|
for (node_id, node) in self.nodes.iter() {
|
|
let start_next_term_id = match &node.data {
|
|
QueryNodeData::Term(term) => *term.term_ids.start() as i16,
|
|
QueryNodeData::End => i16::MAX,
|
|
QueryNodeData::Start => continue,
|
|
QueryNodeData::Deleted => continue,
|
|
};
|
|
if start_next_term_id <= end_prev_term_id {
|
|
continue;
|
|
}
|
|
match start_next_term_id.cmp(&min) {
|
|
Ordering::Less => {
|
|
min = start_next_term_id;
|
|
successors.clear();
|
|
successors.insert(node_id);
|
|
}
|
|
Ordering::Equal => {
|
|
successors.insert(node_id);
|
|
}
|
|
Ordering::Greater => continue,
|
|
}
|
|
}
|
|
successors
|
|
};
|
|
let node = self.nodes.get_mut(node_id);
|
|
node.successors = successors.clone();
|
|
for successor in successors.iter() {
|
|
let successor = self.nodes.get_mut(successor);
|
|
successor.predecessors.insert(node_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn removal_order_for_terms_matching_strategy_last(
|
|
&self,
|
|
ctx: &SearchContext,
|
|
) -> Vec<SmallBitmap<QueryNode>> {
|
|
let (first_term_idx, last_term_idx) = {
|
|
let mut first_term_idx = u8::MAX;
|
|
let mut last_term_idx = 0u8;
|
|
for (_, node) in self.nodes.iter() {
|
|
match &node.data {
|
|
QueryNodeData::Term(t) => {
|
|
if *t.term_ids.end() > last_term_idx {
|
|
last_term_idx = *t.term_ids.end();
|
|
}
|
|
if *t.term_ids.start() < first_term_idx {
|
|
first_term_idx = *t.term_ids.start();
|
|
}
|
|
}
|
|
QueryNodeData::Deleted | QueryNodeData::Start | QueryNodeData::End => continue,
|
|
}
|
|
}
|
|
(first_term_idx, last_term_idx)
|
|
};
|
|
if first_term_idx >= last_term_idx {
|
|
return vec![];
|
|
}
|
|
let cost_of_term_idx = |term_idx: u8| {
|
|
let rank = 1 + last_term_idx - term_idx;
|
|
rank as u16
|
|
};
|
|
let mut nodes_to_remove = BTreeMap::<u16, SmallBitmap<QueryNode>>::new();
|
|
let mut at_least_one_mandatory_term = false;
|
|
for (node_id, node) in self.nodes.iter() {
|
|
let QueryNodeData::Term(t) = &node.data else { continue };
|
|
if t.term_subset.original_phrase(ctx).is_some() || t.term_subset.is_mandatory() {
|
|
at_least_one_mandatory_term = true;
|
|
continue;
|
|
}
|
|
let mut cost = 0;
|
|
for id in t.term_ids.clone() {
|
|
cost = std::cmp::max(cost, cost_of_term_idx(id));
|
|
}
|
|
nodes_to_remove
|
|
.entry(cost)
|
|
.or_insert_with(|| SmallBitmap::for_interned_values_in(&self.nodes))
|
|
.insert(node_id);
|
|
}
|
|
let mut res: Vec<_> = nodes_to_remove.into_values().collect();
|
|
if !at_least_one_mandatory_term {
|
|
res.pop();
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Number of words in the phrases in this query graph
|
|
pub(crate) fn words_in_phrases_count(&self, ctx: &SearchContext) -> usize {
|
|
let mut word_count = 0;
|
|
for (_, node) in self.nodes.iter() {
|
|
match &node.data {
|
|
QueryNodeData::Term(term) => {
|
|
let Some(phrase) = term.term_subset.original_phrase(ctx)
|
|
else {
|
|
continue
|
|
};
|
|
let phrase = ctx.phrase_interner.get(phrase);
|
|
word_count += phrase.words.iter().copied().filter(|a| a.is_some()).count()
|
|
}
|
|
_ => continue,
|
|
}
|
|
}
|
|
word_count
|
|
}
|
|
}
|
|
|
|
fn add_node(nodes_data: &mut Vec<QueryNodeData>, node_data: QueryNodeData) -> u16 {
|
|
let new_node_idx = nodes_data.len() as u16;
|
|
nodes_data.push(node_data);
|
|
new_node_idx
|
|
}
|
|
|
|
impl QueryGraph {
|
|
/*
|
|
Build a query graph from a list of paths
|
|
|
|
The paths are composed of source and dest terms.
|
|
|
|
For example, consider the following paths:
|
|
```txt
|
|
PATH 1 : a -> b1 -> c1 -> d -> e1
|
|
PATH 2 : a -> b2 -> c2 -> d -> e2
|
|
```
|
|
Then the resulting graph will be:
|
|
```txt
|
|
┌────┐ ┌────┐ ┌────┐ ┌────┐
|
|
┌──│ b1 │──│ c1 │───│ d │───│ e1 │
|
|
┌────┐ │ └────┘ └────┘ └────┘ └────┘
|
|
│ a │─┤
|
|
└────┘ │ ┌────┐ ┌────┐ ┌────┐ ┌────┐
|
|
└──│ b2 │──│ c2 │───│ d │───│ e2 │
|
|
└────┘ └────┘ └────┘ └────┘
|
|
```
|
|
*/
|
|
pub fn build_from_paths(
|
|
paths: Vec<Vec<(Option<LocatedQueryTermSubset>, LocatedQueryTermSubset)>>,
|
|
) -> Self {
|
|
let mut node_data = Interner::default();
|
|
let root_node = node_data.push(QueryNodeData::Start);
|
|
let end_node = node_data.push(QueryNodeData::End);
|
|
|
|
let mut paths_with_single_terms = vec![];
|
|
|
|
for path in paths {
|
|
let mut processed_path = vec![];
|
|
let mut prev_dest_term: Option<LocatedQueryTermSubset> = None;
|
|
for (start_term, dest_term) in path {
|
|
if let Some(prev_dest_term) = prev_dest_term.take() {
|
|
if let Some(mut start_term) = start_term {
|
|
if start_term.term_ids == prev_dest_term.term_ids {
|
|
start_term.term_subset.intersect(&prev_dest_term.term_subset);
|
|
processed_path.push(start_term);
|
|
} else {
|
|
processed_path.push(prev_dest_term);
|
|
processed_path.push(start_term);
|
|
}
|
|
} else {
|
|
processed_path.push(prev_dest_term);
|
|
}
|
|
} else if let Some(start_term) = start_term {
|
|
processed_path.push(start_term);
|
|
}
|
|
prev_dest_term = Some(dest_term);
|
|
}
|
|
if let Some(prev_dest_term) = prev_dest_term {
|
|
processed_path.push(prev_dest_term);
|
|
}
|
|
paths_with_single_terms.push(processed_path);
|
|
}
|
|
|
|
let mut paths_with_single_terms_and_suffix_hash = vec![];
|
|
for path in paths_with_single_terms {
|
|
let mut hasher = FxHasher::default();
|
|
let mut path_with_hash = vec![];
|
|
for term in path.into_iter().rev() {
|
|
term.hash(&mut hasher);
|
|
path_with_hash.push((term, hasher.finish()));
|
|
}
|
|
path_with_hash.reverse();
|
|
paths_with_single_terms_and_suffix_hash.push(path_with_hash);
|
|
}
|
|
|
|
let mut node_data_id_for_term_and_suffix_hash =
|
|
FxHashMap::<(LocatedQueryTermSubset, u64), Interned<QueryNodeData>>::default();
|
|
|
|
let mut paths_with_ids = vec![];
|
|
for path in paths_with_single_terms_and_suffix_hash {
|
|
let mut path_with_ids = vec![];
|
|
for (term, suffix_hash) in path {
|
|
let node_data_id = node_data_id_for_term_and_suffix_hash
|
|
.entry((term.clone(), suffix_hash))
|
|
.or_insert_with(|| node_data.push(QueryNodeData::Term(term)));
|
|
path_with_ids.push(Interned::from_raw(node_data_id.into_raw()));
|
|
}
|
|
paths_with_ids.push(path_with_ids);
|
|
}
|
|
|
|
let nodes_data = node_data.freeze();
|
|
let nodes_data_len = nodes_data.len();
|
|
let mut nodes = nodes_data.map_move(|n| QueryNode {
|
|
data: n,
|
|
predecessors: SmallBitmap::new(nodes_data_len),
|
|
successors: SmallBitmap::new(nodes_data_len),
|
|
});
|
|
|
|
let root_node = Interned::<QueryNode>::from_raw(root_node.into_raw());
|
|
let end_node = Interned::<QueryNode>::from_raw(end_node.into_raw());
|
|
|
|
for path in paths_with_ids {
|
|
let mut prev_node_id = root_node;
|
|
for node_id in path {
|
|
let prev_node = nodes.get_mut(prev_node_id);
|
|
prev_node.successors.insert(node_id);
|
|
let node = nodes.get_mut(node_id);
|
|
node.predecessors.insert(prev_node_id);
|
|
prev_node_id = node_id;
|
|
}
|
|
let prev_node = nodes.get_mut(prev_node_id);
|
|
prev_node.successors.insert(end_node);
|
|
let node = nodes.get_mut(end_node);
|
|
node.predecessors.insert(prev_node_id);
|
|
}
|
|
|
|
QueryGraph { root_node, end_node, nodes }
|
|
}
|
|
}
|