meilisearch/milli/src/distance.rs

42 lines
1011 B
Rust

use std::ops;
use instant_distance::Point;
use serde::{Deserialize, Serialize};
use crate::normalize_vector;
#[derive(Debug, Default, Clone, Serialize, Deserialize)]
pub struct NDotProductPoint(Vec<f32>);
impl NDotProductPoint {
pub fn new(point: Vec<f32>) -> Self {
NDotProductPoint(normalize_vector(point))
}
pub fn into_inner(self) -> Vec<f32> {
self.0
}
}
impl ops::Deref for NDotProductPoint {
type Target = [f32];
fn deref(&self) -> &Self::Target {
self.0.as_slice()
}
}
impl Point for NDotProductPoint {
fn distance(&self, other: &Self) -> f32 {
let dist = 1.0 - dot_product_similarity(&self.0, &other.0);
debug_assert!(!dist.is_nan());
dist
}
}
/// Returns the dot product similarity score that will between 0.0 and 1.0
/// if both vectors are normalized. The higher the more similar the vectors are.
pub fn dot_product_similarity(a: &[f32], b: &[f32]) -> f32 {
a.iter().zip(b).map(|(a, b)| a * b).sum()
}