mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-24 20:13:13 +08:00
413 lines
17 KiB
Rust
413 lines
17 KiB
Rust
/*! Implementation of a generic graph-based ranking rule.
|
|
|
|
A graph-based ranking rule is a ranking rule that works by representing
|
|
its possible operations and their relevancy cost as a directed acyclic multi-graph
|
|
built on top of the query graph. It then computes its buckets by finding the
|
|
cheapest paths from the start node to the end node and computing the document ids
|
|
that satisfy those paths.
|
|
|
|
For example, the proximity ranking rule builds a graph where the edges between two
|
|
nodes represent a condition that the term of the source node is in a certain proximity
|
|
to the term of the destination node. With the query "pretty house by" where the term
|
|
"pretty" has three possible proximities to the term "house" and "house" has two
|
|
proximities to "by", the graph will look like this:
|
|
|
|
```txt
|
|
┌───────┐ ┌───────┐─────1────▶┌───────┐──1──▶┌─────┐ ┌───────┐
|
|
│ START │──0─▶│pretty │─────2────▶│ house │ │ by │─0─▶│ END │
|
|
└───────┘ └───────┘─────3────▶└───────┘──2-─▶└─────┘ └───────┘
|
|
```
|
|
The proximity ranking rule's first bucket will be determined by the union of all
|
|
the shortest paths from START to END, which in this case is:
|
|
```txt
|
|
START --0-> pretty --1--> house --1--> by --0--> end
|
|
```
|
|
The path's corresponding document ids are found by taking the intersection of the
|
|
document ids of each edge. That is, we find the documents where both `pretty` is
|
|
1-close to `house` AND `house` is 1-close to `by`.
|
|
|
|
For the second bucket, we get the union of the second-cheapest paths, which are:
|
|
```txt
|
|
START --0-> pretty --1--> house --2--> by --0--> end
|
|
START --0-> pretty --2--> house --1--> by --0--> end
|
|
```
|
|
That is we find the documents where either:
|
|
- `pretty` is 1-close to `house` AND `house` is 2-close to `by`
|
|
- OR: `pretty` is 2-close to `house` AND `house` is 1-close to `by`
|
|
*/
|
|
|
|
use std::collections::BTreeSet;
|
|
use std::ops::ControlFlow;
|
|
|
|
use roaring::RoaringBitmap;
|
|
|
|
use super::interner::{Interned, MappedInterner};
|
|
use super::logger::SearchLogger;
|
|
use super::query_graph::QueryNode;
|
|
use super::ranking_rule_graph::{
|
|
ConditionDocIdsCache, DeadEndsCache, ExactnessGraph, FidGraph, PositionGraph, ProximityGraph,
|
|
RankingRuleGraph, RankingRuleGraphTrait, TypoGraph, WordsGraph,
|
|
};
|
|
use super::small_bitmap::SmallBitmap;
|
|
use super::{QueryGraph, RankingRule, RankingRuleOutput, SearchContext};
|
|
use crate::score_details::Rank;
|
|
use crate::search::new::query_term::LocatedQueryTermSubset;
|
|
use crate::search::new::ranking_rule_graph::PathVisitor;
|
|
use crate::{Result, TermsMatchingStrategy};
|
|
|
|
pub type Words = GraphBasedRankingRule<WordsGraph>;
|
|
impl GraphBasedRankingRule<WordsGraph> {
|
|
pub fn new(terms_matching_strategy: TermsMatchingStrategy) -> Self {
|
|
Self::new_with_id("words".to_owned(), Some(terms_matching_strategy))
|
|
}
|
|
}
|
|
pub type Proximity = GraphBasedRankingRule<ProximityGraph>;
|
|
impl GraphBasedRankingRule<ProximityGraph> {
|
|
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
|
Self::new_with_id("proximity".to_owned(), terms_matching_strategy)
|
|
}
|
|
}
|
|
pub type Fid = GraphBasedRankingRule<FidGraph>;
|
|
impl GraphBasedRankingRule<FidGraph> {
|
|
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
|
Self::new_with_id("fid".to_owned(), terms_matching_strategy)
|
|
}
|
|
}
|
|
pub type Position = GraphBasedRankingRule<PositionGraph>;
|
|
impl GraphBasedRankingRule<PositionGraph> {
|
|
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
|
Self::new_with_id("position".to_owned(), terms_matching_strategy)
|
|
}
|
|
}
|
|
pub type Typo = GraphBasedRankingRule<TypoGraph>;
|
|
impl GraphBasedRankingRule<TypoGraph> {
|
|
pub fn new(terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
|
Self::new_with_id("typo".to_owned(), terms_matching_strategy)
|
|
}
|
|
}
|
|
pub type Exactness = GraphBasedRankingRule<ExactnessGraph>;
|
|
impl GraphBasedRankingRule<ExactnessGraph> {
|
|
pub fn new() -> Self {
|
|
Self::new_with_id("exactness".to_owned(), None)
|
|
}
|
|
}
|
|
|
|
/// A generic graph-based ranking rule
|
|
pub struct GraphBasedRankingRule<G: RankingRuleGraphTrait> {
|
|
id: String,
|
|
terms_matching_strategy: Option<TermsMatchingStrategy>,
|
|
// When the ranking rule is not iterating over its buckets,
|
|
// its state is `None`.
|
|
state: Option<GraphBasedRankingRuleState<G>>,
|
|
}
|
|
impl<G: RankingRuleGraphTrait> GraphBasedRankingRule<G> {
|
|
/// Creates the ranking rule with the given identifier
|
|
pub fn new_with_id(id: String, terms_matching_strategy: Option<TermsMatchingStrategy>) -> Self {
|
|
Self { id, terms_matching_strategy, state: None }
|
|
}
|
|
}
|
|
|
|
/// The internal state of a graph-based ranking rule during iteration
|
|
pub struct GraphBasedRankingRuleState<G: RankingRuleGraphTrait> {
|
|
/// The current graph
|
|
graph: RankingRuleGraph<G>,
|
|
/// Cache to retrieve the docids associated with each edge
|
|
conditions_cache: ConditionDocIdsCache<G>,
|
|
/// Cache used to optimistically discard paths that resolve to no documents.
|
|
dead_ends_cache: DeadEndsCache<G::Condition>,
|
|
/// A structure giving the list of possible costs from each node to the end node
|
|
all_costs: MappedInterner<QueryNode, Vec<u64>>,
|
|
/// An index in the first element of `all_distances`, giving the cost of the next bucket
|
|
cur_cost: u64,
|
|
/// One above the highest possible cost for this rule
|
|
next_max_cost: u64,
|
|
}
|
|
|
|
impl<'ctx, G: RankingRuleGraphTrait> RankingRule<'ctx, QueryGraph> for GraphBasedRankingRule<G> {
|
|
fn id(&self) -> String {
|
|
self.id.clone()
|
|
}
|
|
fn start_iteration(
|
|
&mut self,
|
|
ctx: &mut SearchContext<'ctx>,
|
|
_logger: &mut dyn SearchLogger<QueryGraph>,
|
|
_universe: &RoaringBitmap,
|
|
query_graph: &QueryGraph,
|
|
) -> Result<()> {
|
|
// the `next_max_cost` is the successor integer to the maximum cost of the paths in the graph.
|
|
//
|
|
// When there is a matching strategy, it also factors the additional costs of:
|
|
// 1. The words that are matched in phrases
|
|
// 2. Skipping words (by adding them to the paths with a cost)
|
|
let mut next_max_cost = 1;
|
|
let removal_cost = if let Some(terms_matching_strategy) = self.terms_matching_strategy {
|
|
// add the cost of the phrase to the next_max_cost
|
|
next_max_cost += query_graph
|
|
.words_in_phrases_count(ctx)
|
|
// remove 1 from the words in phrases count, because when there is a phrase we can now have a document
|
|
// where only the phrase is matching, and none of the non-phrase words.
|
|
// With the `1` that `next_max_cost` is initialized with, this gets counted twice.
|
|
.saturating_sub(1) as u64;
|
|
match terms_matching_strategy {
|
|
TermsMatchingStrategy::Last => {
|
|
let removal_order =
|
|
query_graph.removal_order_for_terms_matching_strategy_last(ctx);
|
|
let mut forbidden_nodes =
|
|
SmallBitmap::for_interned_values_in(&query_graph.nodes);
|
|
let mut costs = query_graph.nodes.map(|_| None);
|
|
// FIXME: this works because only words uses termsmatchingstrategy at the moment.
|
|
for ns in removal_order {
|
|
for n in ns.iter() {
|
|
*costs.get_mut(n) = Some((1, forbidden_nodes.clone()));
|
|
}
|
|
forbidden_nodes.union(&ns);
|
|
}
|
|
costs
|
|
}
|
|
TermsMatchingStrategy::All => query_graph.nodes.map(|_| None),
|
|
}
|
|
} else {
|
|
query_graph.nodes.map(|_| None)
|
|
};
|
|
|
|
let graph = RankingRuleGraph::build(ctx, query_graph.clone(), removal_cost)?;
|
|
let condition_docids_cache = ConditionDocIdsCache::default();
|
|
let dead_ends_cache = DeadEndsCache::new(&graph.conditions_interner);
|
|
|
|
// Then pre-compute the cost of all paths from each node to the end node
|
|
let all_costs = graph.find_all_costs_to_end();
|
|
|
|
next_max_cost +=
|
|
all_costs.get(graph.query_graph.root_node).iter().copied().max().unwrap_or(0);
|
|
|
|
let state = GraphBasedRankingRuleState {
|
|
graph,
|
|
conditions_cache: condition_docids_cache,
|
|
dead_ends_cache,
|
|
all_costs,
|
|
cur_cost: 0,
|
|
next_max_cost,
|
|
};
|
|
|
|
self.state = Some(state);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn next_bucket(
|
|
&mut self,
|
|
ctx: &mut SearchContext<'ctx>,
|
|
logger: &mut dyn SearchLogger<QueryGraph>,
|
|
universe: &RoaringBitmap,
|
|
) -> Result<Option<RankingRuleOutput<QueryGraph>>> {
|
|
// Will crash if `next_bucket` is called before `start_iteration` or after `end_iteration`,
|
|
// should never happen
|
|
let mut state = self.state.take().unwrap();
|
|
|
|
let all_costs = state.all_costs.get(state.graph.query_graph.root_node);
|
|
// Retrieve the cost of the paths to compute
|
|
let Some(&cost) = all_costs.iter().find(|c| **c >= state.cur_cost) else {
|
|
self.state = None;
|
|
return Ok(None);
|
|
};
|
|
state.cur_cost = cost + 1;
|
|
|
|
let mut bucket = RoaringBitmap::new();
|
|
|
|
let GraphBasedRankingRuleState {
|
|
graph,
|
|
conditions_cache: condition_docids_cache,
|
|
dead_ends_cache,
|
|
all_costs,
|
|
cur_cost: _,
|
|
next_max_cost,
|
|
} = &mut state;
|
|
|
|
let rank = *next_max_cost - cost;
|
|
let score = G::rank_to_score(Rank { rank: rank as u32, max_rank: *next_max_cost as u32 });
|
|
|
|
let mut universe = universe.clone();
|
|
|
|
let mut used_conditions = SmallBitmap::for_interned_values_in(&graph.conditions_interner);
|
|
let mut good_paths = vec![];
|
|
let mut considered_paths = vec![];
|
|
|
|
// For each path of the given cost, we will compute its associated
|
|
// document ids.
|
|
// In case the path does not resolve to any document id, we try to figure out why
|
|
// and update the `dead_ends_cache` accordingly.
|
|
// Updating the dead_ends_cache helps speed up the execution of `visit_paths_of_cost` and reduces
|
|
// the number of future candidate paths given by that same function.
|
|
|
|
let mut subpaths_docids: Vec<(Interned<G::Condition>, RoaringBitmap)> = vec![];
|
|
|
|
let mut nodes_with_removed_outgoing_conditions = BTreeSet::new();
|
|
let visitor = PathVisitor::new(cost, graph, all_costs, dead_ends_cache);
|
|
|
|
visitor.visit_paths(&mut |path, graph, dead_ends_cache| {
|
|
considered_paths.push(path.to_vec());
|
|
// If the universe is empty, stop exploring the graph, since no docids will ever be found anymore.
|
|
if universe.is_empty() {
|
|
return Ok(ControlFlow::Break(()));
|
|
}
|
|
// `visit_paths` performs a depth-first search, so the previously visited path
|
|
// is likely to share a prefix with the current one.
|
|
// We stored the previous path and the docids associated to each of its prefixes in `subpaths_docids`.
|
|
// We take advantage of this to avoid computing the docids associated with the common prefix between
|
|
// the old and current path.
|
|
let idx_of_first_different_condition = {
|
|
let mut idx = 0;
|
|
for (&last_c, cur_c) in path.iter().zip(subpaths_docids.iter().map(|x| x.0)) {
|
|
if last_c == cur_c {
|
|
idx += 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
subpaths_docids.truncate(idx);
|
|
idx
|
|
};
|
|
// Then for the remaining of the path, we continue computing docids.
|
|
for latest_condition in path[idx_of_first_different_condition..].iter().copied() {
|
|
let success = visit_path_condition(
|
|
ctx,
|
|
graph,
|
|
&universe,
|
|
dead_ends_cache,
|
|
condition_docids_cache,
|
|
&mut subpaths_docids,
|
|
&mut nodes_with_removed_outgoing_conditions,
|
|
latest_condition,
|
|
)?;
|
|
if !success {
|
|
return Ok(ControlFlow::Continue(()));
|
|
}
|
|
}
|
|
assert!(subpaths_docids.iter().map(|x| x.0).eq(path.iter().copied()));
|
|
|
|
let path_docids =
|
|
subpaths_docids.pop().map(|x| x.1).unwrap_or_else(|| universe.clone());
|
|
assert!(!path_docids.is_empty());
|
|
|
|
// Accumulate the path for logging purposes only
|
|
good_paths.push(path.to_vec());
|
|
for &condition in path {
|
|
used_conditions.insert(condition);
|
|
}
|
|
bucket |= &path_docids;
|
|
// Reduce the size of the universe so that we can more optimistically discard candidate paths
|
|
universe -= &path_docids;
|
|
for (_, docids) in subpaths_docids.iter_mut() {
|
|
*docids -= &path_docids;
|
|
}
|
|
|
|
if universe.is_empty() {
|
|
Ok(ControlFlow::Break(()))
|
|
} else {
|
|
Ok(ControlFlow::Continue(()))
|
|
}
|
|
})?;
|
|
logger.log_internal_state(graph);
|
|
logger.log_internal_state(&good_paths);
|
|
|
|
// We modify the next query graph so that it only contains the subgraph
|
|
// that was used to compute this bucket
|
|
|
|
let paths: Vec<Vec<(Option<LocatedQueryTermSubset>, LocatedQueryTermSubset)>> = good_paths
|
|
.into_iter()
|
|
.map(|path| {
|
|
path.into_iter()
|
|
.map(|condition| {
|
|
let (a, b) =
|
|
condition_docids_cache.get_subsets_used_by_condition(condition);
|
|
(a.clone(), b.clone())
|
|
})
|
|
.collect()
|
|
})
|
|
.collect();
|
|
|
|
let next_query_graph = QueryGraph::build_from_paths(paths);
|
|
|
|
#[allow(clippy::comparison_chain)]
|
|
if nodes_with_removed_outgoing_conditions.len() == 1 {
|
|
graph.update_all_costs_before_node(
|
|
*nodes_with_removed_outgoing_conditions.first().unwrap(),
|
|
all_costs,
|
|
);
|
|
} else if nodes_with_removed_outgoing_conditions.len() > 1 {
|
|
*all_costs = graph.find_all_costs_to_end();
|
|
}
|
|
|
|
self.state = Some(state);
|
|
|
|
Ok(Some(RankingRuleOutput { query: next_query_graph, candidates: bucket, score }))
|
|
}
|
|
|
|
fn end_iteration(
|
|
&mut self,
|
|
_ctx: &mut SearchContext<'ctx>,
|
|
_logger: &mut dyn SearchLogger<QueryGraph>,
|
|
) {
|
|
self.state = None;
|
|
}
|
|
}
|
|
|
|
/// Returns false if the intersection between the condition
|
|
/// docids and the previous path docids is empty.
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn visit_path_condition<G: RankingRuleGraphTrait>(
|
|
ctx: &mut SearchContext,
|
|
graph: &mut RankingRuleGraph<G>,
|
|
universe: &RoaringBitmap,
|
|
dead_ends_cache: &mut DeadEndsCache<G::Condition>,
|
|
condition_docids_cache: &mut ConditionDocIdsCache<G>,
|
|
subpath: &mut Vec<(Interned<G::Condition>, RoaringBitmap)>,
|
|
nodes_with_removed_outgoing_conditions: &mut BTreeSet<Interned<QueryNode>>,
|
|
latest_condition: Interned<G::Condition>,
|
|
) -> Result<bool> {
|
|
let condition_docids = &condition_docids_cache
|
|
.get_computed_condition(ctx, latest_condition, graph, universe)?
|
|
.docids;
|
|
if condition_docids.is_empty() {
|
|
// 1. Store in the cache that this edge is empty for this universe
|
|
dead_ends_cache.forbid_condition(latest_condition);
|
|
// 2. remove all the edges with this condition from the ranking rule graph
|
|
let source_nodes = graph.remove_edges_with_condition(latest_condition);
|
|
nodes_with_removed_outgoing_conditions.extend(source_nodes);
|
|
return Ok(false);
|
|
}
|
|
|
|
let latest_path_docids = if let Some((_, prev_docids)) = subpath.last() {
|
|
prev_docids & condition_docids
|
|
} else {
|
|
condition_docids.clone()
|
|
};
|
|
if !latest_path_docids.is_empty() {
|
|
subpath.push((latest_condition, latest_path_docids));
|
|
return Ok(true);
|
|
}
|
|
// If the (sub)path is empty, we try to figure out why and update the caches accordingly.
|
|
|
|
// First, we know that this path is empty, and thus any path
|
|
// that is a superset of it will also be empty.
|
|
dead_ends_cache.forbid_condition_after_prefix(subpath.iter().map(|x| x.0), latest_condition);
|
|
|
|
if subpath.len() <= 1 {
|
|
return Ok(false);
|
|
}
|
|
let mut subprefix = vec![];
|
|
// Deadend if the intersection between this edge and any
|
|
// previous prefix is disjoint with the universe
|
|
// We already know that the intersection with the last one
|
|
// is empty,
|
|
for (past_condition, sp_docids) in subpath[..subpath.len() - 1].iter() {
|
|
subprefix.push(*past_condition);
|
|
if condition_docids.is_disjoint(sp_docids) {
|
|
dead_ends_cache
|
|
.forbid_condition_after_prefix(subprefix.iter().copied(), latest_condition);
|
|
}
|
|
}
|
|
|
|
Ok(false)
|
|
}
|