mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-27 04:25:06 +08:00
416 lines
16 KiB
Rust
416 lines
16 KiB
Rust
use std::cell::RefCell;
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::rc::Rc;
|
|
|
|
use astar_iter::AstarBagIter;
|
|
use fst::{IntoStreamer, Streamer};
|
|
use levenshtein_automata::DFA;
|
|
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
|
use log::debug;
|
|
use once_cell::sync::Lazy;
|
|
use roaring::RoaringBitmap;
|
|
|
|
use crate::node::{self, Node};
|
|
use crate::query_tokens::{QueryTokens, QueryToken};
|
|
use crate::{Index, DocumentId, Position, Attribute};
|
|
|
|
// Building these factories is not free.
|
|
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
|
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
|
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
|
|
|
pub struct Search<'a> {
|
|
query: Option<String>,
|
|
offset: usize,
|
|
limit: usize,
|
|
rtxn: &'a heed::RoTxn,
|
|
index: &'a Index,
|
|
}
|
|
|
|
impl<'a> Search<'a> {
|
|
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
|
Search {
|
|
query: None,
|
|
offset: 0,
|
|
limit: 20,
|
|
rtxn,
|
|
index,
|
|
}
|
|
}
|
|
|
|
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
|
self.query = Some(query.into());
|
|
self
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
|
self.offset = offset;
|
|
self
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
|
self.limit = limit;
|
|
self
|
|
}
|
|
|
|
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
|
/// TODO introduce settings for the number of typos regarding the words lengths.
|
|
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
|
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
|
|
|
let words: Vec<_> = QueryTokens::new(query).collect();
|
|
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
|
let number_of_words = words.len();
|
|
|
|
words.into_iter().enumerate().map(|(i, word)| {
|
|
let (word, quoted) = match word {
|
|
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
|
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
|
};
|
|
let is_last = i + 1 == number_of_words;
|
|
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
|
let lev = match word.len() {
|
|
0..=4 => if quoted { lev0 } else { lev0 },
|
|
5..=8 => if quoted { lev0 } else { lev1 },
|
|
_ => if quoted { lev0 } else { lev2 },
|
|
};
|
|
|
|
let dfa = if is_prefix {
|
|
lev.build_prefix_dfa(&word)
|
|
} else {
|
|
lev.build_dfa(&word)
|
|
};
|
|
|
|
(word, is_prefix, dfa)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Fetch the words from the given FST related to the given DFAs along with the associated
|
|
/// positions and the unions of those positions where the words found appears in the documents.
|
|
fn fetch_words_positions(
|
|
rtxn: &heed::RoTxn,
|
|
index: &Index,
|
|
fst: &fst::Set<&[u8]>,
|
|
dfas: Vec<(String, bool, DFA)>,
|
|
) -> anyhow::Result<(Vec<Vec<(String, u8, RoaringBitmap)>>, Vec<RoaringBitmap>)>
|
|
{
|
|
// A Vec storing all the derived words from the original query words, associated
|
|
// with the distance from the original word and the positions it appears at.
|
|
// The index the derived words appears in the Vec corresponds to the original query
|
|
// word position.
|
|
let mut derived_words = Vec::<Vec::<(String, u8, RoaringBitmap)>>::with_capacity(dfas.len());
|
|
// A Vec storing the unions of all of each of the derived words positions. The index
|
|
// the union appears in the Vec corresponds to the original query word position.
|
|
let mut union_positions = Vec::<RoaringBitmap>::with_capacity(dfas.len());
|
|
|
|
for (_word, _is_prefix, dfa) in dfas {
|
|
|
|
let mut acc_derived_words = Vec::new();
|
|
let mut acc_union_positions = RoaringBitmap::new();
|
|
let mut stream = fst.search_with_state(&dfa).into_stream();
|
|
while let Some((word, state)) = stream.next() {
|
|
|
|
let word = std::str::from_utf8(word)?;
|
|
let positions = index.word_positions.get(rtxn, word)?.unwrap();
|
|
let distance = dfa.distance(state);
|
|
acc_union_positions.union_with(&positions);
|
|
acc_derived_words.push((word.to_string(), distance.to_u8(), positions));
|
|
}
|
|
derived_words.push(acc_derived_words);
|
|
union_positions.push(acc_union_positions);
|
|
}
|
|
|
|
Ok((derived_words, union_positions))
|
|
}
|
|
|
|
/// Returns the set of docids that contains all of the query words.
|
|
fn compute_candidates(
|
|
rtxn: &heed::RoTxn,
|
|
index: &Index,
|
|
derived_words: &[Vec<(String, u8, RoaringBitmap)>],
|
|
) -> anyhow::Result<RoaringBitmap>
|
|
{
|
|
// we do a union between all the docids of each of the derived words,
|
|
// we got N unions (the number of original query words), we then intersect them.
|
|
// TODO we must store the words documents ids to avoid these unions.
|
|
let mut candidates = RoaringBitmap::new();
|
|
let number_of_attributes = index.number_of_attributes(rtxn)?.map_or(0, |n| n as u32);
|
|
|
|
for (i, derived_words) in derived_words.iter().enumerate() {
|
|
|
|
let mut union_docids = RoaringBitmap::new();
|
|
for (word, _distance, _positions) in derived_words {
|
|
for attr in 0..number_of_attributes {
|
|
|
|
let mut key = word.clone().into_bytes();
|
|
key.extend_from_slice(&attr.to_be_bytes());
|
|
if let Some(docids) = index.word_attribute_docids.get(rtxn, &key)? {
|
|
union_docids.union_with(&docids);
|
|
}
|
|
}
|
|
}
|
|
|
|
if i == 0 {
|
|
candidates = union_docids;
|
|
} else {
|
|
candidates.intersect_with(&union_docids);
|
|
}
|
|
}
|
|
|
|
Ok(candidates)
|
|
}
|
|
|
|
/// Returns the union of the same position for all the given words.
|
|
fn union_word_position(
|
|
rtxn: &heed::RoTxn,
|
|
index: &Index,
|
|
words: &[(String, u8, RoaringBitmap)],
|
|
position: Position,
|
|
) -> anyhow::Result<RoaringBitmap>
|
|
{
|
|
let mut union_docids = RoaringBitmap::new();
|
|
for (word, _distance, positions) in words {
|
|
if positions.contains(position) {
|
|
let mut key = word.clone().into_bytes();
|
|
key.extend_from_slice(&position.to_be_bytes());
|
|
if let Some(docids) = index.word_position_docids.get(rtxn, &key)? {
|
|
union_docids.union_with(&docids);
|
|
}
|
|
}
|
|
}
|
|
Ok(union_docids)
|
|
}
|
|
|
|
/// Returns the union of the same attribute for all the given words.
|
|
fn union_word_attribute(
|
|
rtxn: &heed::RoTxn,
|
|
index: &Index,
|
|
words: &[(String, u8, RoaringBitmap)],
|
|
attribute: Attribute,
|
|
) -> anyhow::Result<RoaringBitmap>
|
|
{
|
|
let mut union_docids = RoaringBitmap::new();
|
|
for (word, _distance, _positions) in words {
|
|
let mut key = word.clone().into_bytes();
|
|
key.extend_from_slice(&attribute.to_be_bytes());
|
|
if let Some(docids) = index.word_attribute_docids.get(rtxn, &key)? {
|
|
union_docids.union_with(&docids);
|
|
}
|
|
}
|
|
Ok(union_docids)
|
|
}
|
|
|
|
// Returns `true` if there is documents in common between the two words and positions given.
|
|
fn contains_documents(
|
|
rtxn: &heed::RoTxn,
|
|
index: &Index,
|
|
(lword, lpos): (usize, u32),
|
|
(rword, rpos): (usize, u32),
|
|
candidates: &RoaringBitmap,
|
|
derived_words: &[Vec<(String, u8, RoaringBitmap)>],
|
|
union_cache: &mut HashMap<(usize, u32), RoaringBitmap>,
|
|
non_disjoint_cache: &mut HashMap<((usize, u32), (usize, u32)), bool>,
|
|
attribute_union_cache: &mut HashMap<(usize, u32), RoaringBitmap>,
|
|
attribute_non_disjoint_cache: &mut HashMap<((usize, u32), (usize, u32)), bool>,
|
|
) -> bool
|
|
{
|
|
if lpos == rpos { return false }
|
|
|
|
// TODO move this function to a better place.
|
|
let (lattr, _) = node::extract_position(lpos);
|
|
let (rattr, _) = node::extract_position(rpos);
|
|
|
|
if lattr == rattr {
|
|
// We retrieve or compute the intersection between the two given words and positions.
|
|
*non_disjoint_cache.entry(((lword, lpos), (rword, rpos))).or_insert_with(|| {
|
|
// We retrieve or compute the unions for the two words and positions.
|
|
union_cache.entry((lword, lpos)).or_insert_with(|| {
|
|
let words: &Vec<_> = &derived_words[lword];
|
|
Self::union_word_position(rtxn, index, words, lpos).unwrap()
|
|
});
|
|
union_cache.entry((rword, rpos)).or_insert_with(|| {
|
|
let words: &Vec<_> = &derived_words[rword];
|
|
Self::union_word_position(rtxn, index, words, rpos).unwrap()
|
|
});
|
|
|
|
// TODO is there a way to avoid this double gets?
|
|
let lunion_docids = union_cache.get(&(lword, lpos)).unwrap();
|
|
let runion_docids = union_cache.get(&(rword, rpos)).unwrap();
|
|
|
|
// We first check that the docids of these unions are part of the candidates.
|
|
if lunion_docids.is_disjoint(candidates) { return false }
|
|
if runion_docids.is_disjoint(candidates) { return false }
|
|
|
|
!lunion_docids.is_disjoint(&runion_docids)
|
|
})
|
|
} else {
|
|
*attribute_non_disjoint_cache.entry(((lword, lattr), (rword, rattr))).or_insert_with(|| {
|
|
// We retrieve or compute the unions for the two words and positions.
|
|
attribute_union_cache.entry((lword, lattr)).or_insert_with(|| {
|
|
let words: &Vec<_> = &derived_words[lword];
|
|
Self::union_word_attribute(rtxn, index, words, lattr).unwrap()
|
|
});
|
|
attribute_union_cache.entry((rword, rattr)).or_insert_with(|| {
|
|
let words: &Vec<_> = &derived_words[rword];
|
|
Self::union_word_attribute(rtxn, index, words, rattr).unwrap()
|
|
});
|
|
|
|
// TODO is there a way to avoid this double gets?
|
|
let lunion_docids = attribute_union_cache.get(&(lword, lattr)).unwrap();
|
|
let runion_docids = attribute_union_cache.get(&(rword, rattr)).unwrap();
|
|
|
|
// We first check that the docids of these unions are part of the candidates.
|
|
if lunion_docids.is_disjoint(candidates) { return false }
|
|
if runion_docids.is_disjoint(candidates) { return false }
|
|
|
|
!lunion_docids.is_disjoint(&runion_docids)
|
|
})
|
|
}
|
|
}
|
|
|
|
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
|
let rtxn = self.rtxn;
|
|
let index = self.index;
|
|
|
|
let fst = match index.fst(rtxn)? {
|
|
Some(fst) => fst,
|
|
None => return Ok(Default::default()),
|
|
};
|
|
|
|
// Construct the DFAs related to the query words.
|
|
// TODO do a placeholder search when query string isn't present.
|
|
let dfas = match &self.query {
|
|
Some(q) => Self::generate_query_dfas(q),
|
|
None => return Ok(Default::default()),
|
|
};
|
|
|
|
if dfas.is_empty() {
|
|
return Ok(Default::default());
|
|
}
|
|
|
|
let (derived_words, union_positions) = Self::fetch_words_positions(rtxn, index, &fst, dfas)?;
|
|
let candidates = Self::compute_candidates(rtxn, index, &derived_words)?;
|
|
|
|
let union_cache = HashMap::new();
|
|
let mut non_disjoint_cache = HashMap::new();
|
|
|
|
let mut attribute_union_cache = HashMap::new();
|
|
let mut attribute_non_disjoint_cache = HashMap::new();
|
|
|
|
let candidates = Rc::new(RefCell::new(candidates));
|
|
let union_cache = Rc::new(RefCell::new(union_cache));
|
|
|
|
let candidates_cloned = candidates.clone();
|
|
let union_cache_cloned = union_cache.clone();
|
|
let mut contains_documents = |left, right| {
|
|
Self::contains_documents(
|
|
rtxn, index,
|
|
left, right,
|
|
&candidates_cloned.borrow(),
|
|
&derived_words,
|
|
&mut union_cache_cloned.borrow_mut(),
|
|
&mut non_disjoint_cache,
|
|
&mut attribute_union_cache,
|
|
&mut attribute_non_disjoint_cache,
|
|
)
|
|
};
|
|
|
|
// We instantiate an astar bag Iterator that returns the best paths incrementally,
|
|
// it means that it will first return the best paths then the next best paths...
|
|
let astar_iter = AstarBagIter::new(
|
|
Node::Uninit, // start
|
|
|n| n.successors(&union_positions, &mut contains_documents), // successors
|
|
|_| 0, // heuristic
|
|
|n| n.is_complete(&union_positions), // success
|
|
);
|
|
|
|
let mut documents = Vec::new();
|
|
for (paths, proximity) in astar_iter {
|
|
|
|
let mut union_cache = union_cache.borrow_mut();
|
|
let mut candidates = candidates.borrow_mut();
|
|
|
|
let mut positions: Vec<Vec<_>> = paths.map(|p| p.iter().filter_map(Node::position).collect()).collect();
|
|
positions.sort_unstable();
|
|
|
|
debug!("Found {} positions with a proximity of {}", positions.len(), proximity);
|
|
|
|
let mut same_proximity_union = RoaringBitmap::default();
|
|
for positions in positions {
|
|
// Precompute the potentially missing unions
|
|
positions.iter().enumerate().for_each(|(word, pos)| {
|
|
union_cache.entry((word, *pos)).or_insert_with(|| {
|
|
let words = &&derived_words[word];
|
|
|
|
Self::union_word_position(rtxn, index, words, *pos).unwrap()
|
|
});
|
|
});
|
|
|
|
// Retrieve the unions along with the popularity of it.
|
|
let mut to_intersect: Vec<_> = positions.iter()
|
|
.enumerate()
|
|
.map(|(word, pos)| {
|
|
let docids = union_cache.get(&(word, *pos)).unwrap();
|
|
(docids.len(), docids)
|
|
})
|
|
.collect();
|
|
|
|
// Sort the unions by popularity to help reduce
|
|
// the number of documents as soon as possible.
|
|
to_intersect.sort_unstable_by_key(|(l, _)| *l);
|
|
|
|
let intersect_docids: Option<RoaringBitmap> = to_intersect.into_iter()
|
|
.fold(None, |acc, (_, union_docids)| {
|
|
match acc {
|
|
Some(mut left) => {
|
|
left.intersect_with(&union_docids);
|
|
Some(left)
|
|
},
|
|
None => Some(union_docids.clone()),
|
|
}
|
|
});
|
|
|
|
if let Some(intersect_docids) = intersect_docids {
|
|
same_proximity_union.union_with(&intersect_docids);
|
|
}
|
|
|
|
// We found enough documents we can stop here
|
|
if documents.iter().map(RoaringBitmap::len).sum::<u64>() + same_proximity_union.len() >= 20 {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We achieve to find valid documents ids so we remove them from the candidates list.
|
|
candidates.difference_with(&same_proximity_union);
|
|
|
|
documents.push(same_proximity_union);
|
|
|
|
// We remove the double occurences of documents.
|
|
for i in 0..documents.len() {
|
|
if let Some((docs, others)) = documents[..=i].split_last_mut() {
|
|
others.iter().for_each(|other| docs.difference_with(other));
|
|
}
|
|
}
|
|
documents.retain(|rb| !rb.is_empty());
|
|
|
|
// We found enough documents we can stop here.
|
|
if documents.iter().map(RoaringBitmap::len).sum::<u64>() >= 20 {
|
|
break;
|
|
}
|
|
}
|
|
|
|
let found_words = derived_words.into_iter().flatten().map(|(w, _, _)| w).collect();
|
|
let documents_ids = documents.iter().flatten().take(20).collect();
|
|
|
|
Ok(SearchResult { found_words, documents_ids })
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct SearchResult {
|
|
pub found_words: HashSet<String>,
|
|
// TODO those documents ids should be associated with their criteria scores.
|
|
pub documents_ids: Vec<DocumentId>,
|
|
}
|