mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-27 04:25:06 +08:00
284 lines
10 KiB
Rust
284 lines
10 KiB
Rust
use std::collections::{HashMap, HashSet};
|
|
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
|
|
|
use fst::{IntoStreamer, Streamer};
|
|
use levenshtein_automata::DFA;
|
|
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
|
|
use log::debug;
|
|
use once_cell::sync::Lazy;
|
|
use roaring::bitmap::{IntoIter, RoaringBitmap};
|
|
|
|
use crate::query_tokens::{QueryTokens, QueryToken};
|
|
use crate::{Index, DocumentId};
|
|
|
|
// Building these factories is not free.
|
|
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
|
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
|
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
|
|
|
pub struct Search<'a> {
|
|
query: Option<String>,
|
|
offset: usize,
|
|
limit: usize,
|
|
rtxn: &'a heed::RoTxn,
|
|
index: &'a Index,
|
|
}
|
|
|
|
impl<'a> Search<'a> {
|
|
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
|
Search { query: None, offset: 0, limit: 20, rtxn, index }
|
|
}
|
|
|
|
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
|
self.query = Some(query.into());
|
|
self
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
|
self.offset = offset;
|
|
self
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
|
self.limit = limit;
|
|
self
|
|
}
|
|
|
|
/// Extracts the query words from the query string and returns the DFAs accordingly.
|
|
/// TODO introduce settings for the number of typos regarding the words lengths.
|
|
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
|
|
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
|
|
|
|
let words: Vec<_> = QueryTokens::new(query).collect();
|
|
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
|
let number_of_words = words.len();
|
|
|
|
words.into_iter().enumerate().map(|(i, word)| {
|
|
let (word, quoted) = match word {
|
|
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
|
|
QueryToken::Quoted(word) => (word.to_lowercase(), true),
|
|
};
|
|
let is_last = i + 1 == number_of_words;
|
|
let is_prefix = is_last && !ends_with_whitespace && !quoted;
|
|
let lev = match word.len() {
|
|
0..=4 => if quoted { lev0 } else { lev0 },
|
|
5..=8 => if quoted { lev0 } else { lev1 },
|
|
_ => if quoted { lev0 } else { lev2 },
|
|
};
|
|
|
|
let dfa = if is_prefix {
|
|
lev.build_prefix_dfa(&word)
|
|
} else {
|
|
lev.build_dfa(&word)
|
|
};
|
|
|
|
(word, is_prefix, dfa)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Fetch the words from the given FST related to the given DFAs along with
|
|
/// the associated documents ids.
|
|
fn fetch_words_docids(
|
|
&self,
|
|
fst: &fst::Set<&[u8]>,
|
|
dfas: Vec<(String, bool, DFA)>,
|
|
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
|
|
{
|
|
// A Vec storing all the derived words from the original query words, associated
|
|
// with the distance from the original word and the docids where the words appears.
|
|
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
|
|
|
|
for (_word, _is_prefix, dfa) in dfas {
|
|
|
|
let mut acc_derived_words = HashMap::new();
|
|
let mut unions_docids = RoaringBitmap::new();
|
|
let mut stream = fst.search_with_state(&dfa).into_stream();
|
|
while let Some((word, state)) = stream.next() {
|
|
|
|
let word = std::str::from_utf8(word)?;
|
|
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
|
|
let distance = dfa.distance(state);
|
|
unions_docids.union_with(&docids);
|
|
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
|
|
}
|
|
derived_words.push((acc_derived_words, unions_docids));
|
|
}
|
|
|
|
Ok(derived_words)
|
|
}
|
|
|
|
/// Returns the set of docids that contains all of the query words.
|
|
fn compute_candidates(
|
|
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
|
) -> RoaringBitmap
|
|
{
|
|
// We sort the derived words by inverse popularity, this way intersections are faster.
|
|
let mut derived_words: Vec<_> = derived_words.iter().collect();
|
|
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
|
|
|
|
// we do a union between all the docids of each of the derived words,
|
|
// we got N unions (the number of original query words), we then intersect them.
|
|
let mut candidates = RoaringBitmap::new();
|
|
|
|
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
|
|
if i == 0 {
|
|
candidates = union_docids.clone();
|
|
} else {
|
|
candidates.intersect_with(&union_docids);
|
|
}
|
|
}
|
|
|
|
candidates
|
|
}
|
|
|
|
fn fecth_keywords(
|
|
&self,
|
|
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
|
candidate: DocumentId,
|
|
) -> anyhow::Result<Vec<IntoIter>>
|
|
{
|
|
let mut keywords = Vec::with_capacity(derived_words.len());
|
|
|
|
for (words, _) in derived_words {
|
|
|
|
let mut union_positions = RoaringBitmap::new();
|
|
for (word, (_distance, docids)) in words {
|
|
|
|
if !docids.contains(candidate) { continue; }
|
|
if let Some(positions) = self.index.docid_word_positions.get(self.rtxn, &(candidate, word))? {
|
|
union_positions.union_with(&positions);
|
|
}
|
|
}
|
|
keywords.push(union_positions.into_iter());
|
|
}
|
|
|
|
Ok(keywords)
|
|
}
|
|
|
|
fn words_pair_combinations<'h>(
|
|
w1: &'h HashMap<String, (u8, RoaringBitmap)>,
|
|
w2: &'h HashMap<String, (u8, RoaringBitmap)>,
|
|
) -> Vec<(&'h str, &'h str)>
|
|
{
|
|
let mut pairs = Vec::new();
|
|
for (w1, (_typos, docids1)) in w1 {
|
|
for (w2, (_typos, docids2)) in w2 {
|
|
if !docids1.is_disjoint(&docids2) {
|
|
pairs.push((w1.as_str(), w2.as_str()));
|
|
}
|
|
}
|
|
}
|
|
pairs
|
|
}
|
|
|
|
fn depth_first_search(
|
|
&self,
|
|
words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
|
|
candidates: &RoaringBitmap,
|
|
parent_docids: &RoaringBitmap,
|
|
union_cache: &mut HashMap<(usize, u8), RoaringBitmap>,
|
|
) -> anyhow::Result<Option<RoaringBitmap>>
|
|
{
|
|
let (words1, words2) = (&words[0].0, &words[1].0);
|
|
let pairs = Self::words_pair_combinations(words1, words2);
|
|
|
|
for proximity in 1..=8 {
|
|
let mut docids = match union_cache.entry((words.len(), proximity)) {
|
|
Occupied(entry) => entry.get().clone(),
|
|
Vacant(entry) => {
|
|
let mut docids = RoaringBitmap::new();
|
|
if proximity == 8 {
|
|
docids = candidates.clone();
|
|
} else {
|
|
for (w1, w2) in pairs.iter().cloned() {
|
|
let key = (w1, w2, proximity);
|
|
if let Some(di) = self.index.word_pair_proximity_docids.get(self.rtxn, &key)? {
|
|
docids.union_with(&di);
|
|
}
|
|
}
|
|
}
|
|
entry.insert(docids).clone()
|
|
}
|
|
};
|
|
|
|
docids.intersect_with(parent_docids);
|
|
|
|
if !docids.is_empty() {
|
|
let words = &words[1..];
|
|
// We are the last word.
|
|
if words.len() < 2 { return Ok(Some(docids)) }
|
|
if let Some(di) = self.depth_first_search(words, candidates, &docids, union_cache)? {
|
|
return Ok(Some(di))
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
|
|
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
|
let limit = self.limit;
|
|
|
|
let fst = match self.index.fst(self.rtxn)? {
|
|
Some(fst) => fst,
|
|
None => return Ok(Default::default()),
|
|
};
|
|
|
|
// Construct the DFAs related to the query words.
|
|
// TODO do a placeholder search when query string isn't present.
|
|
let dfas = match &self.query {
|
|
Some(q) => Self::generate_query_dfas(q),
|
|
None => return Ok(Default::default()),
|
|
};
|
|
|
|
if dfas.is_empty() {
|
|
return Ok(Default::default());
|
|
}
|
|
|
|
let derived_words = self.fetch_words_docids(&fst, dfas)?;
|
|
let mut candidates = Self::compute_candidates(&derived_words);
|
|
|
|
debug!("candidates: {:?}", candidates);
|
|
|
|
// If there is only one query word, no need to compute the best proximities.
|
|
if derived_words.len() == 1 || candidates.is_empty() {
|
|
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
|
let documents_ids = candidates.iter().take(limit).collect();
|
|
return Ok(SearchResult { found_words, documents_ids });
|
|
}
|
|
|
|
let mut documents = Vec::new();
|
|
let mut union_cache = HashMap::new();
|
|
|
|
// We execute the DFS until we find enough documents, we run it with the
|
|
// candidates list and remove the found documents from this list at each iteration.
|
|
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
|
let answer = self.depth_first_search(&derived_words, &candidates, &candidates, &mut union_cache)?;
|
|
|
|
let answer = match answer {
|
|
Some(answer) if !answer.is_empty() => answer,
|
|
_ => break,
|
|
};
|
|
|
|
debug!("answer: {:?}", answer);
|
|
|
|
// We remove the answered documents from the list of
|
|
// candidates to be sure we don't search for them again.
|
|
candidates.difference_with(&answer);
|
|
documents.push(answer);
|
|
}
|
|
|
|
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
|
let documents_ids = documents.into_iter().flatten().take(limit).collect();
|
|
Ok(SearchResult { found_words, documents_ids })
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct SearchResult {
|
|
pub found_words: HashSet<String>,
|
|
// TODO those documents ids should be associated with their criteria scores.
|
|
pub documents_ids: Vec<DocumentId>,
|
|
}
|