meilisearch/src/search.rs

284 lines
10 KiB
Rust

use std::collections::{HashMap, HashSet};
use std::collections::hash_map::Entry::{Occupied, Vacant};
use fst::{IntoStreamer, Streamer};
use levenshtein_automata::DFA;
use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder;
use log::debug;
use once_cell::sync::Lazy;
use roaring::bitmap::{IntoIter, RoaringBitmap};
use crate::query_tokens::{QueryTokens, QueryToken};
use crate::{Index, DocumentId};
// Building these factories is not free.
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
pub struct Search<'a> {
query: Option<String>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn,
index: &'a Index,
}
impl<'a> Search<'a> {
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
Search { query: None, offset: 0, limit: 20, rtxn, index }
}
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
self.query = Some(query.into());
self
}
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
self.offset = offset;
self
}
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
self.limit = limit;
self
}
/// Extracts the query words from the query string and returns the DFAs accordingly.
/// TODO introduce settings for the number of typos regarding the words lengths.
fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> {
let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2);
let words: Vec<_> = QueryTokens::new(query).collect();
let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace);
let number_of_words = words.len();
words.into_iter().enumerate().map(|(i, word)| {
let (word, quoted) = match word {
QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3),
QueryToken::Quoted(word) => (word.to_lowercase(), true),
};
let is_last = i + 1 == number_of_words;
let is_prefix = is_last && !ends_with_whitespace && !quoted;
let lev = match word.len() {
0..=4 => if quoted { lev0 } else { lev0 },
5..=8 => if quoted { lev0 } else { lev1 },
_ => if quoted { lev0 } else { lev2 },
};
let dfa = if is_prefix {
lev.build_prefix_dfa(&word)
} else {
lev.build_dfa(&word)
};
(word, is_prefix, dfa)
})
.collect()
}
/// Fetch the words from the given FST related to the given DFAs along with
/// the associated documents ids.
fn fetch_words_docids(
&self,
fst: &fst::Set<&[u8]>,
dfas: Vec<(String, bool, DFA)>,
) -> anyhow::Result<Vec<(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)>>
{
// A Vec storing all the derived words from the original query words, associated
// with the distance from the original word and the docids where the words appears.
let mut derived_words = Vec::<(HashMap::<String, (u8, RoaringBitmap)>, RoaringBitmap)>::with_capacity(dfas.len());
for (_word, _is_prefix, dfa) in dfas {
let mut acc_derived_words = HashMap::new();
let mut unions_docids = RoaringBitmap::new();
let mut stream = fst.search_with_state(&dfa).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap();
let distance = dfa.distance(state);
unions_docids.union_with(&docids);
acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids));
}
derived_words.push((acc_derived_words, unions_docids));
}
Ok(derived_words)
}
/// Returns the set of docids that contains all of the query words.
fn compute_candidates(
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
) -> RoaringBitmap
{
// We sort the derived words by inverse popularity, this way intersections are faster.
let mut derived_words: Vec<_> = derived_words.iter().collect();
derived_words.sort_unstable_by_key(|(_, docids)| docids.len());
// we do a union between all the docids of each of the derived words,
// we got N unions (the number of original query words), we then intersect them.
let mut candidates = RoaringBitmap::new();
for (i, (_, union_docids)) in derived_words.iter().enumerate() {
if i == 0 {
candidates = union_docids.clone();
} else {
candidates.intersect_with(&union_docids);
}
}
candidates
}
fn fecth_keywords(
&self,
derived_words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
candidate: DocumentId,
) -> anyhow::Result<Vec<IntoIter>>
{
let mut keywords = Vec::with_capacity(derived_words.len());
for (words, _) in derived_words {
let mut union_positions = RoaringBitmap::new();
for (word, (_distance, docids)) in words {
if !docids.contains(candidate) { continue; }
if let Some(positions) = self.index.docid_word_positions.get(self.rtxn, &(candidate, word))? {
union_positions.union_with(&positions);
}
}
keywords.push(union_positions.into_iter());
}
Ok(keywords)
}
fn words_pair_combinations<'h>(
w1: &'h HashMap<String, (u8, RoaringBitmap)>,
w2: &'h HashMap<String, (u8, RoaringBitmap)>,
) -> Vec<(&'h str, &'h str)>
{
let mut pairs = Vec::new();
for (w1, (_typos, docids1)) in w1 {
for (w2, (_typos, docids2)) in w2 {
if !docids1.is_disjoint(&docids2) {
pairs.push((w1.as_str(), w2.as_str()));
}
}
}
pairs
}
fn depth_first_search(
&self,
words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
candidates: &RoaringBitmap,
parent_docids: &RoaringBitmap,
union_cache: &mut HashMap<(usize, u8), RoaringBitmap>,
) -> anyhow::Result<Option<RoaringBitmap>>
{
let (words1, words2) = (&words[0].0, &words[1].0);
let pairs = Self::words_pair_combinations(words1, words2);
for proximity in 1..=8 {
let mut docids = match union_cache.entry((words.len(), proximity)) {
Occupied(entry) => entry.get().clone(),
Vacant(entry) => {
let mut docids = RoaringBitmap::new();
if proximity == 8 {
docids = candidates.clone();
} else {
for (w1, w2) in pairs.iter().cloned() {
let key = (w1, w2, proximity);
if let Some(di) = self.index.word_pair_proximity_docids.get(self.rtxn, &key)? {
docids.union_with(&di);
}
}
}
entry.insert(docids).clone()
}
};
docids.intersect_with(parent_docids);
if !docids.is_empty() {
let words = &words[1..];
// We are the last word.
if words.len() < 2 { return Ok(Some(docids)) }
if let Some(di) = self.depth_first_search(words, candidates, &docids, union_cache)? {
return Ok(Some(di))
}
}
}
Ok(None)
}
pub fn execute(&self) -> anyhow::Result<SearchResult> {
let limit = self.limit;
let fst = match self.index.fst(self.rtxn)? {
Some(fst) => fst,
None => return Ok(Default::default()),
};
// Construct the DFAs related to the query words.
// TODO do a placeholder search when query string isn't present.
let dfas = match &self.query {
Some(q) => Self::generate_query_dfas(q),
None => return Ok(Default::default()),
};
if dfas.is_empty() {
return Ok(Default::default());
}
let derived_words = self.fetch_words_docids(&fst, dfas)?;
let mut candidates = Self::compute_candidates(&derived_words);
debug!("candidates: {:?}", candidates);
// If there is only one query word, no need to compute the best proximities.
if derived_words.len() == 1 || candidates.is_empty() {
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
let documents_ids = candidates.iter().take(limit).collect();
return Ok(SearchResult { found_words, documents_ids });
}
let mut documents = Vec::new();
let mut union_cache = HashMap::new();
// We execute the DFS until we find enough documents, we run it with the
// candidates list and remove the found documents from this list at each iteration.
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
let answer = self.depth_first_search(&derived_words, &candidates, &candidates, &mut union_cache)?;
let answer = match answer {
Some(answer) if !answer.is_empty() => answer,
_ => break,
};
debug!("answer: {:?}", answer);
// We remove the answered documents from the list of
// candidates to be sure we don't search for them again.
candidates.difference_with(&answer);
documents.push(answer);
}
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
let documents_ids = documents.into_iter().flatten().take(limit).collect();
Ok(SearchResult { found_words, documents_ids })
}
}
#[derive(Default)]
pub struct SearchResult {
pub found_words: HashSet<String>,
// TODO those documents ids should be associated with their criteria scores.
pub documents_ids: Vec<DocumentId>,
}