mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-27 20:45:06 +08:00
276 lines
10 KiB
Rust
276 lines
10 KiB
Rust
use std::time::{Instant, Duration};
|
|
use std::ops::Range;
|
|
use std::{cmp, mem};
|
|
|
|
use fst::{IntoStreamer, Streamer};
|
|
use sdset::SetBuf;
|
|
use slice_group_by::{GroupBy, GroupByMut};
|
|
|
|
use crate::automaton::{Automaton, AutomatonProducer, QueryEnhancer};
|
|
use crate::raw_document::{RawDocument, raw_documents_from};
|
|
use crate::{Document, DocumentId, Highlight, TmpMatch, criterion::Criteria};
|
|
use crate::{store, reordered_attrs::ReorderedAttrs};
|
|
|
|
pub struct Automatons {
|
|
// TODO better use Vec of SmallVec
|
|
automatons: Vec<Vec<Automaton>>,
|
|
}
|
|
|
|
pub struct QueryBuilder<'a> {
|
|
criteria: Criteria<'a>,
|
|
searchables_attrs: Option<ReorderedAttrs>,
|
|
timeout: Duration,
|
|
words_store: store::Words,
|
|
synonyms_store: store::Synonyms,
|
|
}
|
|
|
|
fn multiword_rewrite_matches(
|
|
mut matches: Vec<(DocumentId, TmpMatch)>,
|
|
query_enhancer: &QueryEnhancer,
|
|
) -> SetBuf<(DocumentId, TmpMatch)>
|
|
{
|
|
let mut padded_matches = Vec::with_capacity(matches.len());
|
|
|
|
// we sort the matches by word index to make them rewritable
|
|
matches.sort_unstable_by_key(|(id, match_)| (*id, match_.attribute, match_.word_index));
|
|
|
|
let start = Instant::now();
|
|
// for each attribute of each document
|
|
for same_document_attribute in matches.linear_group_by_key(|(id, m)| (*id, m.attribute)) {
|
|
|
|
// padding will only be applied
|
|
// to word indices in the same attribute
|
|
let mut padding = 0;
|
|
let mut iter = same_document_attribute.linear_group_by_key(|(_, m)| m.word_index);
|
|
|
|
// for each match at the same position
|
|
// in this document attribute
|
|
while let Some(same_word_index) = iter.next() {
|
|
|
|
// find the biggest padding
|
|
let mut biggest = 0;
|
|
for (id, match_) in same_word_index {
|
|
|
|
let mut replacement = query_enhancer.replacement(match_.query_index);
|
|
let replacement_len = replacement.len();
|
|
let nexts = iter.remainder().linear_group_by_key(|(_, m)| m.word_index);
|
|
|
|
if let Some(query_index) = replacement.next() {
|
|
let word_index = match_.word_index + padding as u16;
|
|
let match_ = TmpMatch { query_index, word_index, ..match_.clone() };
|
|
padded_matches.push((*id, match_));
|
|
}
|
|
|
|
let mut found = false;
|
|
|
|
// look ahead and if there already is a match
|
|
// corresponding to this padding word, abort the padding
|
|
'padding: for (x, next_group) in nexts.enumerate() {
|
|
|
|
for (i, query_index) in replacement.clone().enumerate().skip(x) {
|
|
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
|
|
let padmatch = TmpMatch { query_index, word_index, ..match_.clone() };
|
|
|
|
for (_, nmatch_) in next_group {
|
|
let mut rep = query_enhancer.replacement(nmatch_.query_index);
|
|
let query_index = rep.next().unwrap();
|
|
if query_index == padmatch.query_index {
|
|
|
|
if !found {
|
|
// if we find a corresponding padding for the
|
|
// first time we must push preceding paddings
|
|
for (i, query_index) in replacement.clone().enumerate().take(i) {
|
|
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
|
|
let match_ = TmpMatch { query_index, word_index, ..match_.clone() };
|
|
padded_matches.push((*id, match_));
|
|
biggest = biggest.max(i + 1);
|
|
}
|
|
}
|
|
|
|
padded_matches.push((*id, padmatch));
|
|
found = true;
|
|
continue 'padding;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if we do not find a corresponding padding in the
|
|
// next groups so stop here and pad what was found
|
|
break
|
|
}
|
|
|
|
if !found {
|
|
// if no padding was found in the following matches
|
|
// we must insert the entire padding
|
|
for (i, query_index) in replacement.enumerate() {
|
|
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
|
|
let match_ = TmpMatch { query_index, word_index, ..match_.clone() };
|
|
padded_matches.push((*id, match_));
|
|
}
|
|
|
|
biggest = biggest.max(replacement_len - 1);
|
|
}
|
|
}
|
|
|
|
padding += biggest;
|
|
}
|
|
}
|
|
|
|
for document_matches in padded_matches.linear_group_by_key_mut(|(id, _)| *id) {
|
|
document_matches.sort_unstable();
|
|
}
|
|
|
|
SetBuf::new_unchecked(padded_matches)
|
|
}
|
|
|
|
fn fetch_raw_documents(
|
|
reader: &rkv::Reader,
|
|
automatons: &[Automaton],
|
|
query_enhancer: &QueryEnhancer,
|
|
searchables: Option<&ReorderedAttrs>,
|
|
words_store: &store::Words,
|
|
) -> Result<Vec<RawDocument>, rkv::StoreError>
|
|
{
|
|
let mut matches = Vec::new();
|
|
let mut highlights = Vec::new();
|
|
|
|
for automaton in automatons {
|
|
let Automaton { index, is_exact, query_len, .. } = automaton;
|
|
let dfa = automaton.dfa();
|
|
|
|
let words = words_store.words_fst(reader)?;
|
|
|
|
let mut stream = words.search(&dfa).into_stream();
|
|
while let Some(input) = stream.next() {
|
|
let distance = dfa.eval(input).to_u8();
|
|
let is_exact = *is_exact && distance == 0 && input.len() == *query_len;
|
|
|
|
let doc_indexes = match words_store.word_indexes(reader, input)? {
|
|
Some(doc_indexes) => doc_indexes,
|
|
None => continue,
|
|
};
|
|
|
|
matches.reserve(doc_indexes.len());
|
|
highlights.reserve(doc_indexes.len());
|
|
|
|
for di in doc_indexes.as_ref() {
|
|
let attribute = searchables.map_or(Some(di.attribute), |r| r.get(di.attribute));
|
|
if let Some(attribute) = attribute {
|
|
let match_ = TmpMatch {
|
|
query_index: *index as u32,
|
|
distance,
|
|
attribute,
|
|
word_index: di.word_index,
|
|
is_exact,
|
|
};
|
|
|
|
let highlight = Highlight {
|
|
attribute: di.attribute,
|
|
char_index: di.char_index,
|
|
char_length: di.char_length,
|
|
};
|
|
|
|
matches.push((di.document_id, match_));
|
|
highlights.push((di.document_id, highlight));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let matches = multiword_rewrite_matches(matches, &query_enhancer);
|
|
let highlights = {
|
|
highlights.sort_unstable_by_key(|(id, _)| *id);
|
|
SetBuf::new_unchecked(highlights)
|
|
};
|
|
|
|
Ok(raw_documents_from(matches, highlights))
|
|
}
|
|
|
|
impl<'a> QueryBuilder<'a> {
|
|
pub fn new(words: store::Words, synonyms: store::Synonyms) -> QueryBuilder<'a> {
|
|
QueryBuilder {
|
|
criteria: Criteria::default(),
|
|
searchables_attrs: None,
|
|
timeout: Duration::from_secs(1),
|
|
words_store: words,
|
|
synonyms_store: synonyms,
|
|
}
|
|
}
|
|
|
|
pub fn query(
|
|
self,
|
|
reader: &rkv::Reader,
|
|
query: &str,
|
|
range: Range<usize>,
|
|
) -> Result<Vec<Document>, rkv::StoreError>
|
|
{
|
|
let start_processing = Instant::now();
|
|
let mut raw_documents_processed = Vec::new();
|
|
|
|
let (automaton_producer, query_enhancer) = AutomatonProducer::new(reader, query, self.synonyms_store);
|
|
let mut automaton_producer = automaton_producer.into_iter();
|
|
let mut automatons = Vec::new();
|
|
|
|
// aggregate automatons groups by groups after time
|
|
while let Some(auts) = automaton_producer.next() {
|
|
automatons.extend(auts);
|
|
|
|
// we must retrieve the documents associated
|
|
// with the current automatons
|
|
let mut raw_documents = fetch_raw_documents(
|
|
reader,
|
|
&automatons,
|
|
&query_enhancer,
|
|
self.searchables_attrs.as_ref(),
|
|
&self.words_store,
|
|
)?;
|
|
|
|
let mut groups = vec![raw_documents.as_mut_slice()];
|
|
|
|
'criteria: for criterion in self.criteria.as_ref() {
|
|
let tmp_groups = mem::replace(&mut groups, Vec::new());
|
|
let mut documents_seen = 0;
|
|
|
|
for group in tmp_groups {
|
|
// if this group does not overlap with the requested range,
|
|
// push it without sorting and splitting it
|
|
if documents_seen + group.len() < range.start {
|
|
documents_seen += group.len();
|
|
groups.push(group);
|
|
continue;
|
|
}
|
|
|
|
group.sort_unstable_by(|a, b| criterion.evaluate(a, b));
|
|
|
|
for group in group.binary_group_by_mut(|a, b| criterion.eq(a, b)) {
|
|
documents_seen += group.len();
|
|
groups.push(group);
|
|
|
|
// we have sort enough documents if the last document sorted is after
|
|
// the end of the requested range, we can continue to the next criterion
|
|
if documents_seen >= range.end { continue 'criteria }
|
|
}
|
|
}
|
|
}
|
|
|
|
// once we classified the documents related to the current
|
|
// automatons we save that as the next valid result
|
|
let iter = raw_documents.into_iter().skip(range.start).take(range.len());
|
|
raw_documents_processed.clear();
|
|
raw_documents_processed.extend(iter);
|
|
|
|
// stop processing after there is no time
|
|
if start_processing.elapsed() > self.timeout { break }
|
|
}
|
|
|
|
// make real documents now that we know
|
|
// those must be returned
|
|
let documents = raw_documents_processed
|
|
.into_iter()
|
|
.map(|d| Document::from_raw(d))
|
|
.collect();
|
|
|
|
Ok(documents)
|
|
}
|
|
}
|