mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-12-23 20:06:03 +08:00
507 lines
22 KiB
Rust
507 lines
22 KiB
Rust
use std::collections::BTreeSet;
|
|
use std::convert::Infallible;
|
|
use std::fmt::Write;
|
|
use std::{io, str};
|
|
|
|
use heed::{Error as HeedError, MdbError};
|
|
use rayon::ThreadPoolBuildError;
|
|
use rhai::EvalAltResult;
|
|
use serde_json::Value;
|
|
use thiserror::Error;
|
|
|
|
use crate::documents::{self, DocumentsBatchCursorError};
|
|
use crate::thread_pool_no_abort::PanicCatched;
|
|
use crate::{CriterionError, DocumentId, FieldId, Object, SortError};
|
|
|
|
pub fn is_reserved_keyword(keyword: &str) -> bool {
|
|
["_geo", "_geoDistance", "_geoPoint", "_geoRadius", "_geoBoundingBox"].contains(&keyword)
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum Error {
|
|
#[error("internal: {0}.")]
|
|
InternalError(#[from] InternalError),
|
|
#[error(transparent)]
|
|
IoError(#[from] io::Error),
|
|
#[error(transparent)]
|
|
UserError(#[from] UserError),
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum InternalError {
|
|
#[error("{}", HeedError::DatabaseClosing)]
|
|
DatabaseClosing,
|
|
#[error("missing {} in the {db_name} database", key.unwrap_or("key"))]
|
|
DatabaseMissingEntry { db_name: &'static str, key: Option<&'static str> },
|
|
#[error("missing {key} in the fieldids weights mapping")]
|
|
FieldidsWeightsMapMissingEntry { key: FieldId },
|
|
#[error(transparent)]
|
|
FieldIdMapMissingEntry(#[from] FieldIdMapMissingEntry),
|
|
#[error("missing {key} in the field id mapping")]
|
|
FieldIdMappingMissingEntry { key: FieldId },
|
|
#[error(transparent)]
|
|
Fst(#[from] fst::Error),
|
|
#[error(transparent)]
|
|
DocumentsError(#[from] documents::Error),
|
|
#[error("invalid compression type have been specified to grenad")]
|
|
GrenadInvalidCompressionType,
|
|
#[error("invalid grenad file with an invalid version format")]
|
|
GrenadInvalidFormatVersion,
|
|
#[error("invalid merge while processing {process}")]
|
|
IndexingMergingKeys { process: &'static str },
|
|
#[error(transparent)]
|
|
RayonThreadPool(#[from] ThreadPoolBuildError),
|
|
#[error(transparent)]
|
|
PanicInThreadPool(#[from] PanicCatched),
|
|
#[error(transparent)]
|
|
SerdeJson(#[from] serde_json::Error),
|
|
#[error(transparent)]
|
|
BincodeError(#[from] bincode::Error),
|
|
#[error(transparent)]
|
|
Serialization(#[from] SerializationError),
|
|
#[error(transparent)]
|
|
Store(#[from] MdbError),
|
|
#[error(transparent)]
|
|
Utf8(#[from] str::Utf8Error),
|
|
#[error("An indexation process was explicitly aborted")]
|
|
AbortedIndexation,
|
|
#[error("The matching words list contains at least one invalid member")]
|
|
InvalidMatchingWords,
|
|
#[error(transparent)]
|
|
ArroyError(#[from] arroy::Error),
|
|
#[error(transparent)]
|
|
VectorEmbeddingError(#[from] crate::vector::Error),
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum SerializationError {
|
|
#[error("{}", match .db_name {
|
|
Some(name) => format!("decoding from the {name} database failed"),
|
|
None => "decoding failed".to_string(),
|
|
})]
|
|
Decoding { db_name: Option<&'static str> },
|
|
#[error("{}", match .db_name {
|
|
Some(name) => format!("encoding into the {name} database failed"),
|
|
None => "encoding failed".to_string(),
|
|
})]
|
|
Encoding { db_name: Option<&'static str> },
|
|
#[error("number is not a valid finite number")]
|
|
InvalidNumberSerialization,
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum FieldIdMapMissingEntry {
|
|
#[error("unknown field id {field_id} coming from the {process} process")]
|
|
FieldId { field_id: FieldId, process: &'static str },
|
|
#[error("unknown field name {field_name} coming from the {process} process")]
|
|
FieldName { field_name: String, process: &'static str },
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum UserError {
|
|
#[error("A document cannot contain more than 65,535 fields.")]
|
|
AttributeLimitReached,
|
|
#[error(transparent)]
|
|
CriterionError(#[from] CriterionError),
|
|
#[error("Maximum number of documents reached.")]
|
|
DocumentLimitReached,
|
|
#[error(
|
|
"Document identifier `{}` is invalid. \
|
|
A document identifier can be of type integer or string, \
|
|
only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and underscores (_), \
|
|
and can not be more than 512 bytes.", .document_id.to_string()
|
|
)]
|
|
InvalidDocumentId { document_id: Value },
|
|
#[error("Invalid facet distribution, {}", format_invalid_filter_distribution(.invalid_facets_name, .valid_facets_name))]
|
|
InvalidFacetsDistribution {
|
|
invalid_facets_name: BTreeSet<String>,
|
|
valid_facets_name: BTreeSet<String>,
|
|
},
|
|
#[error(transparent)]
|
|
InvalidGeoField(#[from] GeoError),
|
|
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
|
|
InvalidVectorDimensions { expected: usize, found: usize },
|
|
#[error("The `_vectors` field in the document with id: `{document_id}` is not an object. Was expecting an object with a key for each embedder with manually provided vectors, but instead got `{value}`")]
|
|
InvalidVectorsMapType { document_id: String, value: Value },
|
|
#[error("Bad embedder configuration in the document with id: `{document_id}`. {error}")]
|
|
InvalidVectorsEmbedderConf { document_id: String, error: String },
|
|
#[error("{0}")]
|
|
InvalidFilter(String),
|
|
#[error("Invalid type for filter subexpression: expected: {}, found: {1}.", .0.join(", "))]
|
|
InvalidFilterExpression(&'static [&'static str], Value),
|
|
#[error("Attribute `{}` is not sortable. {}",
|
|
.field,
|
|
match .valid_fields.is_empty() {
|
|
true => "This index does not have configured sortable attributes.".to_string(),
|
|
false => format!("Available sortable attributes are: `{}{}`.",
|
|
valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", "),
|
|
.hidden_fields.then_some(", <..hidden-attributes>").unwrap_or(""),
|
|
),
|
|
}
|
|
)]
|
|
InvalidSortableAttribute { field: String, valid_fields: BTreeSet<String>, hidden_fields: bool },
|
|
#[error("Attribute `{}` is not filterable and thus, cannot be used as distinct attribute. {}",
|
|
.field,
|
|
match .valid_fields.is_empty() {
|
|
true => "This index does not have configured filterable attributes.".to_string(),
|
|
false => format!("Available filterable attributes are: `{}{}`.",
|
|
valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", "),
|
|
.hidden_fields.then_some(", <..hidden-attributes>").unwrap_or(""),
|
|
),
|
|
}
|
|
)]
|
|
InvalidDistinctAttribute { field: String, valid_fields: BTreeSet<String>, hidden_fields: bool },
|
|
#[error("Attribute `{}` is not facet-searchable. {}",
|
|
.field,
|
|
match .valid_fields.is_empty() {
|
|
true => "This index does not have configured facet-searchable attributes. To make it facet-searchable add it to the `filterableAttributes` index settings.".to_string(),
|
|
false => format!("Available facet-searchable attributes are: `{}{}`. To make it facet-searchable add it to the `filterableAttributes` index settings.",
|
|
valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", "),
|
|
.hidden_fields.then_some(", <..hidden-attributes>").unwrap_or(""),
|
|
),
|
|
}
|
|
)]
|
|
InvalidFacetSearchFacetName {
|
|
field: String,
|
|
valid_fields: BTreeSet<String>,
|
|
hidden_fields: bool,
|
|
},
|
|
#[error("Attribute `{}` is not searchable. Available searchable attributes are: `{}{}`.",
|
|
.field,
|
|
.valid_fields.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", "),
|
|
.hidden_fields.then_some(", <..hidden-attributes>").unwrap_or(""),
|
|
)]
|
|
InvalidSearchableAttribute {
|
|
field: String,
|
|
valid_fields: BTreeSet<String>,
|
|
hidden_fields: bool,
|
|
},
|
|
#[error("an environment is already opened with different options")]
|
|
InvalidLmdbOpenOptions,
|
|
#[error("You must specify where `sort` is listed in the rankingRules setting to use the sort parameter at search time.")]
|
|
SortRankingRuleMissing,
|
|
#[error("The database file is in an invalid state.")]
|
|
InvalidStoreFile,
|
|
#[error("Maximum database size has been reached.")]
|
|
MaxDatabaseSizeReached,
|
|
#[error("Document doesn't have a `{}` attribute: `{}`.", .primary_key, serde_json::to_string(.document).unwrap())]
|
|
MissingDocumentId { primary_key: String, document: Object },
|
|
#[error("Document have too many matching `{}` attribute: `{}`.", .primary_key, serde_json::to_string(.document).unwrap())]
|
|
TooManyDocumentIds { primary_key: String, document: Object },
|
|
#[error("The primary key inference failed as the engine did not find any field ending with `id` in its name. Please specify the primary key manually using the `primaryKey` query parameter.")]
|
|
NoPrimaryKeyCandidateFound,
|
|
#[error("The primary key inference failed as the engine found {} fields ending with `id` in their names: '{}' and '{}'. Please specify the primary key manually using the `primaryKey` query parameter.", .candidates.len(), .candidates.first().unwrap(), .candidates.get(1).unwrap())]
|
|
MultiplePrimaryKeyCandidatesFound { candidates: Vec<String> },
|
|
#[error("There is no more space left on the device. Consider increasing the size of the disk/partition.")]
|
|
NoSpaceLeftOnDevice,
|
|
#[error("Index already has a primary key: `{0}`.")]
|
|
PrimaryKeyCannotBeChanged(String),
|
|
#[error(transparent)]
|
|
SerdeJson(serde_json::Error),
|
|
#[error(transparent)]
|
|
SortError(#[from] SortError),
|
|
#[error("An unknown internal document id have been used: `{document_id}`.")]
|
|
UnknownInternalDocumentId { document_id: DocumentId },
|
|
#[error("`minWordSizeForTypos` setting is invalid. `oneTypo` and `twoTypos` fields should be between `0` and `255`, and `twoTypos` should be greater or equals to `oneTypo` but found `oneTypo: {0}` and twoTypos: {1}`.")]
|
|
InvalidMinTypoWordLenSetting(u8, u8),
|
|
#[error(transparent)]
|
|
VectorEmbeddingError(#[from] crate::vector::Error),
|
|
#[error(transparent)]
|
|
MissingDocumentField(#[from] crate::prompt::error::RenderPromptError),
|
|
#[error(transparent)]
|
|
InvalidPrompt(#[from] crate::prompt::error::NewPromptError),
|
|
#[error("`.embedders.{0}.documentTemplate`: Invalid template: {1}.")]
|
|
InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError),
|
|
#[error("Too many embedders in the configuration. Found {0}, but limited to 256.")]
|
|
TooManyEmbedders(usize),
|
|
#[error("Cannot find embedder with name `{0}`.")]
|
|
InvalidEmbedder(String),
|
|
#[error("Too many vectors for document with id {0}: found {1}, but limited to 256.")]
|
|
TooManyVectors(String, usize),
|
|
#[error("`.embedders.{embedder_name}`: Field `{field}` unavailable for source `{source_}` (only available for sources: {}). Available fields: {}",
|
|
allowed_sources_for_field
|
|
.iter()
|
|
.map(|accepted| format!("`{}`", accepted))
|
|
.collect::<Vec<String>>()
|
|
.join(", "),
|
|
allowed_fields_for_source
|
|
.iter()
|
|
.map(|accepted| format!("`{}`", accepted))
|
|
.collect::<Vec<String>>()
|
|
.join(", ")
|
|
)]
|
|
InvalidFieldForSource {
|
|
embedder_name: String,
|
|
source_: crate::vector::settings::EmbedderSource,
|
|
field: &'static str,
|
|
allowed_fields_for_source: &'static [&'static str],
|
|
allowed_sources_for_field: &'static [crate::vector::settings::EmbedderSource],
|
|
},
|
|
#[error("`.embedders.{embedder_name}.model`: Invalid model `{model}` for OpenAI. Supported models: {:?}", crate::vector::openai::EmbeddingModel::supported_models())]
|
|
InvalidOpenAiModel { embedder_name: String, model: String },
|
|
#[error("`.embedders.{embedder_name}`: Missing field `{field}` (note: this field is mandatory for source {source_})")]
|
|
MissingFieldForSource {
|
|
field: &'static str,
|
|
source_: crate::vector::settings::EmbedderSource,
|
|
embedder_name: String,
|
|
},
|
|
#[error("`.embedders.{embedder_name}.dimensions`: Model `{model}` does not support overriding its native dimensions of {expected_dimensions}. Found {dimensions}")]
|
|
InvalidOpenAiModelDimensions {
|
|
embedder_name: String,
|
|
model: &'static str,
|
|
dimensions: usize,
|
|
expected_dimensions: usize,
|
|
},
|
|
#[error("`.embedders.{embedder_name}.dimensions`: Model `{model}` does not support overriding its dimensions to a value higher than {max_dimensions}. Found {dimensions}")]
|
|
InvalidOpenAiModelDimensionsMax {
|
|
embedder_name: String,
|
|
model: &'static str,
|
|
dimensions: usize,
|
|
max_dimensions: usize,
|
|
},
|
|
#[error("`.embedders.{embedder_name}.dimensions`: `dimensions` cannot be zero")]
|
|
InvalidSettingsDimensions { embedder_name: String },
|
|
#[error(
|
|
"`.embedders.{embedder_name}.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors."
|
|
)]
|
|
InvalidDisableBinaryQuantization { embedder_name: String },
|
|
#[error("`.embedders.{embedder_name}.documentTemplateMaxBytes`: `documentTemplateMaxBytes` cannot be zero")]
|
|
InvalidSettingsDocumentTemplateMaxBytes { embedder_name: String },
|
|
#[error("`.embedders.{embedder_name}.url`: could not parse `{url}`: {inner_error}")]
|
|
InvalidUrl { embedder_name: String, inner_error: url::ParseError, url: String },
|
|
#[error("Document editions cannot modify a document's primary key")]
|
|
DocumentEditionCannotModifyPrimaryKey,
|
|
#[error("Document editions must keep documents as objects")]
|
|
DocumentEditionDocumentMustBeObject,
|
|
#[error("Document edition runtime error encountered while running the function: {0}")]
|
|
DocumentEditionRuntimeError(Box<EvalAltResult>),
|
|
#[error("Document edition runtime error encountered while compiling the function: {0}")]
|
|
DocumentEditionCompilationError(rhai::ParseError),
|
|
#[error("{0}")]
|
|
DocumentEmbeddingError(String),
|
|
}
|
|
|
|
impl From<crate::vector::Error> for Error {
|
|
fn from(value: crate::vector::Error) -> Self {
|
|
match value.fault() {
|
|
FaultSource::User => Error::UserError(value.into()),
|
|
FaultSource::Runtime => Error::UserError(value.into()),
|
|
FaultSource::Bug => Error::InternalError(value.into()),
|
|
FaultSource::Undecided => Error::UserError(value.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<arroy::Error> for Error {
|
|
fn from(value: arroy::Error) -> Self {
|
|
match value {
|
|
arroy::Error::Heed(heed) => heed.into(),
|
|
arroy::Error::Io(io) => io.into(),
|
|
arroy::Error::InvalidVecDimension { expected, received } => {
|
|
Error::UserError(UserError::InvalidVectorDimensions { expected, found: received })
|
|
}
|
|
arroy::Error::BuildCancelled => Error::InternalError(InternalError::AbortedIndexation),
|
|
arroy::Error::DatabaseFull
|
|
| arroy::Error::InvalidItemAppend
|
|
| arroy::Error::UnmatchingDistance { .. }
|
|
| arroy::Error::NeedBuild(_)
|
|
| arroy::Error::MissingKey { .. }
|
|
| arroy::Error::MissingMetadata(_) => {
|
|
Error::InternalError(InternalError::ArroyError(value))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Error, Debug)]
|
|
pub enum GeoError {
|
|
#[error("The `_geo` field in the document with the id: `{document_id}` is not an object. Was expecting an object with the `_geo.lat` and `_geo.lng` fields but instead got `{value}`.")]
|
|
NotAnObject { document_id: Value, value: Value },
|
|
#[error("The `_geo` field in the document with the id: `{document_id}` contains the following unexpected fields: `{value}`.")]
|
|
UnexpectedExtraFields { document_id: Value, value: Value },
|
|
#[error("Could not find latitude nor longitude in the document with the id: `{document_id}`. Was expecting `_geo.lat` and `_geo.lng` fields.")]
|
|
MissingLatitudeAndLongitude { document_id: Value },
|
|
#[error("Could not find latitude in the document with the id: `{document_id}`. Was expecting a `_geo.lat` field.")]
|
|
MissingLatitude { document_id: Value },
|
|
#[error("Could not find longitude in the document with the id: `{document_id}`. Was expecting a `_geo.lng` field.")]
|
|
MissingLongitude { document_id: Value },
|
|
#[error("Could not parse latitude nor longitude in the document with the id: `{document_id}`. Was expecting finite numbers but instead got `{lat}` and `{lng}`.")]
|
|
BadLatitudeAndLongitude { document_id: Value, lat: Value, lng: Value },
|
|
#[error("Could not parse latitude in the document with the id: `{document_id}`. Was expecting a finite number but instead got `{value}`.")]
|
|
BadLatitude { document_id: Value, value: Value },
|
|
#[error("Could not parse longitude in the document with the id: `{document_id}`. Was expecting a finite number but instead got `{value}`.")]
|
|
BadLongitude { document_id: Value, value: Value },
|
|
}
|
|
|
|
fn format_invalid_filter_distribution(
|
|
invalid_facets_name: &BTreeSet<String>,
|
|
valid_facets_name: &BTreeSet<String>,
|
|
) -> String {
|
|
if valid_facets_name.is_empty() {
|
|
return "this index does not have configured filterable attributes.".into();
|
|
}
|
|
|
|
let mut result = String::new();
|
|
|
|
match invalid_facets_name.len() {
|
|
0 => (),
|
|
1 => write!(
|
|
result,
|
|
"attribute `{}` is not filterable.",
|
|
invalid_facets_name.first().unwrap()
|
|
)
|
|
.unwrap(),
|
|
_ => write!(
|
|
result,
|
|
"attributes `{}` are not filterable.",
|
|
invalid_facets_name.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", ")
|
|
)
|
|
.unwrap(),
|
|
};
|
|
|
|
match valid_facets_name.len() {
|
|
1 => write!(
|
|
result,
|
|
" The available filterable attribute is `{}`.",
|
|
valid_facets_name.first().unwrap()
|
|
)
|
|
.unwrap(),
|
|
_ => write!(
|
|
result,
|
|
" The available filterable attributes are `{}`.",
|
|
valid_facets_name.iter().map(AsRef::as_ref).collect::<Vec<&str>>().join(", ")
|
|
)
|
|
.unwrap(),
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
/// A little macro helper to autogenerate From implementation that needs two `Into`.
|
|
/// Given the following parameters: `error_from_sub_error!(FieldIdMapMissingEntry => InternalError)`
|
|
/// the macro will create the following code:
|
|
/// ```ignore
|
|
/// impl From<FieldIdMapMissingEntry> for Error {
|
|
/// fn from(error: FieldIdMapMissingEntry) -> Error {
|
|
/// Error::from(InternalError::from(error))
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
macro_rules! error_from_sub_error {
|
|
() => {};
|
|
($sub:ty => $intermediate:ty) => {
|
|
impl From<$sub> for Error {
|
|
fn from(error: $sub) -> Error {
|
|
Error::from(<$intermediate>::from(error))
|
|
}
|
|
}
|
|
};
|
|
($($sub:ty => $intermediate:ty $(,)?),+) => {
|
|
$(error_from_sub_error!($sub => $intermediate);)+
|
|
};
|
|
}
|
|
|
|
error_from_sub_error! {
|
|
FieldIdMapMissingEntry => InternalError,
|
|
fst::Error => InternalError,
|
|
documents::Error => InternalError,
|
|
str::Utf8Error => InternalError,
|
|
ThreadPoolBuildError => InternalError,
|
|
SerializationError => InternalError,
|
|
GeoError => UserError,
|
|
CriterionError => UserError,
|
|
}
|
|
|
|
impl<E> From<grenad::Error<E>> for Error
|
|
where
|
|
Error: From<E>,
|
|
{
|
|
fn from(error: grenad::Error<E>) -> Error {
|
|
match error {
|
|
grenad::Error::Io(error) => Error::IoError(error),
|
|
grenad::Error::Merge(error) => Error::from(error),
|
|
grenad::Error::InvalidCompressionType => {
|
|
Error::InternalError(InternalError::GrenadInvalidCompressionType)
|
|
}
|
|
grenad::Error::InvalidFormatVersion => {
|
|
Error::InternalError(InternalError::GrenadInvalidFormatVersion)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<DocumentsBatchCursorError> for Error {
|
|
fn from(error: DocumentsBatchCursorError) -> Error {
|
|
match error {
|
|
DocumentsBatchCursorError::Grenad(e) => Error::from(e),
|
|
DocumentsBatchCursorError::SerdeJson(e) => Error::from(InternalError::from(e)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Infallible> for Error {
|
|
fn from(_error: Infallible) -> Error {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
impl From<HeedError> for Error {
|
|
fn from(error: HeedError) -> Error {
|
|
use self::Error::*;
|
|
use self::InternalError::*;
|
|
use self::SerializationError::*;
|
|
use self::UserError::*;
|
|
|
|
match error {
|
|
HeedError::Io(error) => Error::from(error),
|
|
HeedError::Mdb(MdbError::MapFull) => UserError(MaxDatabaseSizeReached),
|
|
HeedError::Mdb(MdbError::Invalid) => UserError(InvalidStoreFile),
|
|
HeedError::Mdb(error) => InternalError(Store(error)),
|
|
// TODO use the encoding
|
|
HeedError::Encoding(_) => InternalError(Serialization(Encoding { db_name: None })),
|
|
HeedError::Decoding(_) => InternalError(Serialization(Decoding { db_name: None })),
|
|
HeedError::DatabaseClosing => InternalError(DatabaseClosing),
|
|
HeedError::BadOpenOptions { .. } => UserError(InvalidLmdbOpenOptions),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum FaultSource {
|
|
User,
|
|
Runtime,
|
|
Bug,
|
|
Undecided,
|
|
}
|
|
|
|
impl std::fmt::Display for FaultSource {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
let s = match self {
|
|
FaultSource::User => "user error",
|
|
FaultSource::Runtime => "runtime error",
|
|
FaultSource::Bug => "coding error",
|
|
FaultSource::Undecided => "error",
|
|
};
|
|
f.write_str(s)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn conditionally_lookup_for_error_message() {
|
|
let prefix = "Attribute `name` is not sortable.";
|
|
let messages = vec![
|
|
(BTreeSet::new(), "This index does not have configured sortable attributes."),
|
|
(BTreeSet::from(["age".to_string()]), "Available sortable attributes are: `age`."),
|
|
];
|
|
|
|
for (list, suffix) in messages {
|
|
let err = UserError::InvalidSortableAttribute {
|
|
field: "name".to_string(),
|
|
valid_fields: list,
|
|
hidden_fields: false,
|
|
};
|
|
|
|
assert_eq!(err.to_string(), format!("{} {}", prefix, suffix));
|
|
}
|
|
}
|