meilisearch/milli/src/search/new/resolve_query_graph.rs
2023-03-20 09:41:56 +01:00

222 lines
7.8 KiB
Rust

use std::collections::VecDeque;
use fxhash::FxHashMap;
use heed::{BytesDecode, RoTxn};
use roaring::{MultiOps, RoaringBitmap};
use super::db_cache::DatabaseCache;
use super::query_term::{Phrase, QueryTerm, WordDerivations};
use super::{QueryGraph, QueryNode};
use crate::{CboRoaringBitmapCodec, Index, Result, RoaringBitmapCodec};
// TODO: manual performance metrics: access to DB, bitmap deserializations/operations, etc.
#[derive(Default)]
pub struct NodeDocIdsCache {
pub cache: FxHashMap<u32, RoaringBitmap>,
}
impl NodeDocIdsCache {
fn get_docids<'cache, 'transaction>(
&'cache mut self,
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
term: &QueryTerm,
node_idx: u32,
) -> Result<&'cache RoaringBitmap> {
if self.cache.contains_key(&node_idx) {
return Ok(&self.cache[&node_idx]);
};
let docids = match term {
QueryTerm::Phrase { phrase } => resolve_phrase(index, txn, db_cache, phrase)?,
QueryTerm::Word {
derivations:
WordDerivations {
original,
zero_typo,
one_typo,
two_typos,
use_prefix_db,
synonyms,
split_words,
},
} => {
let mut or_docids = vec![];
for word in zero_typo.iter().chain(one_typo.iter()).chain(two_typos.iter()) {
if let Some(word_docids) = db_cache.get_word_docids(index, txn, word)? {
or_docids.push(word_docids);
}
}
if *use_prefix_db {
if let Some(prefix_docids) =
db_cache.get_prefix_docids(index, txn, original.as_str())?
{
or_docids.push(prefix_docids);
}
}
let mut docids = or_docids
.into_iter()
.map(|slice| RoaringBitmapCodec::bytes_decode(slice).unwrap())
.collect::<Vec<_>>();
for synonym in synonyms {
// TODO: cache resolve_phrase?
docids.push(resolve_phrase(index, txn, db_cache, synonym)?);
}
if let Some((left, right)) = split_words {
if let Some(split_word_docids) =
db_cache.get_word_pair_proximity_docids(index, txn, left, right, 1)?
{
docids.push(CboRoaringBitmapCodec::deserialize_from(split_word_docids)?);
}
}
MultiOps::union(docids)
}
};
let _ = self.cache.insert(node_idx, docids);
let docids = &self.cache[&node_idx];
Ok(docids)
}
}
pub fn resolve_query_graph<'transaction>(
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
node_docids_cache: &mut NodeDocIdsCache,
q: &QueryGraph,
universe: &RoaringBitmap,
) -> Result<RoaringBitmap> {
// TODO: there is definitely a faster way to compute this big
// roaring bitmap expression
let mut nodes_resolved = RoaringBitmap::new();
let mut path_nodes_docids = vec![RoaringBitmap::new(); q.nodes.len()];
let mut next_nodes_to_visit = VecDeque::new();
next_nodes_to_visit.push_front(q.root_node);
while let Some(node) = next_nodes_to_visit.pop_front() {
let predecessors = &q.edges[node as usize].predecessors;
if !predecessors.is_subset(&nodes_resolved) {
next_nodes_to_visit.push_back(node);
continue;
}
// Take union of all predecessors
let predecessors_iter = predecessors.iter().map(|p| &path_nodes_docids[p as usize]);
let predecessors_docids = MultiOps::union(predecessors_iter);
let n = &q.nodes[node as usize];
let node_docids = match n {
QueryNode::Term(located_term) => {
let term = &located_term.value;
let derivations_docids =
node_docids_cache.get_docids(index, txn, db_cache, term, node)?;
predecessors_docids & derivations_docids
}
QueryNode::Deleted => {
panic!()
}
QueryNode::Start => universe.clone(),
QueryNode::End => {
return Ok(predecessors_docids);
}
};
nodes_resolved.insert(node);
path_nodes_docids[node as usize] = node_docids;
for succ in q.edges[node as usize].successors.iter() {
if !next_nodes_to_visit.contains(&succ) && !nodes_resolved.contains(succ) {
next_nodes_to_visit.push_back(succ);
}
}
// This is currently slow but could easily be implemented very efficiently
for prec in q.edges[node as usize].predecessors.iter() {
if q.edges[prec as usize].successors.is_subset(&nodes_resolved) {
path_nodes_docids[prec as usize].clear();
}
}
}
panic!()
}
pub fn resolve_phrase<'transaction>(
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
phrase: &Phrase,
) -> Result<RoaringBitmap> {
let Phrase { words } = phrase;
let mut candidates = RoaringBitmap::new();
let mut first_iter = true;
let winsize = words.len().min(3);
if words.is_empty() {
return Ok(candidates);
}
for win in words.windows(winsize) {
// Get all the documents with the matching distance for each word pairs.
let mut bitmaps = Vec::with_capacity(winsize.pow(2));
for (offset, s1) in win
.iter()
.enumerate()
.filter_map(|(index, word)| word.as_ref().map(|word| (index, word)))
{
for (dist, s2) in win
.iter()
.skip(offset + 1)
.enumerate()
.filter_map(|(index, word)| word.as_ref().map(|word| (index, word)))
{
if dist == 0 {
match db_cache.get_word_pair_proximity_docids(index, txn, s1, s2, 1)? {
Some(m) => bitmaps.push(CboRoaringBitmapCodec::deserialize_from(m)?),
// If there are no documents for this pair, there will be no
// results for the phrase query.
None => return Ok(RoaringBitmap::new()),
}
} else {
let mut bitmap = RoaringBitmap::new();
for dist in 0..=dist {
if let Some(m) = db_cache.get_word_pair_proximity_docids(
index,
txn,
s1,
s2,
dist as u8 + 1,
)? {
bitmap |= CboRoaringBitmapCodec::deserialize_from(m)?;
}
}
if bitmap.is_empty() {
return Ok(bitmap);
} else {
bitmaps.push(bitmap);
}
}
}
}
// We sort the bitmaps so that we perform the small intersections first, which is faster.
bitmaps.sort_unstable_by_key(|a| a.len());
for bitmap in bitmaps {
if first_iter {
candidates = bitmap;
first_iter = false;
} else {
candidates &= bitmap;
}
// There will be no match, return early
if candidates.is_empty() {
break;
}
}
}
Ok(candidates)
}