meilisearch/milli/src/search/hybrid.rs
2023-12-14 16:07:48 +01:00

337 lines
12 KiB
Rust

use std::cmp::Ordering;
use std::collections::HashMap;
use itertools::Itertools;
use roaring::RoaringBitmap;
use super::new::{execute_vector_search, PartialSearchResult};
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
use crate::{
execute_search, DefaultSearchLogger, MatchingWords, Result, Search, SearchContext, SearchResult,
};
struct CombinedSearchResult {
matching_words: MatchingWords,
candidates: RoaringBitmap,
document_scores: Vec<(u32, CombinedScore)>,
}
type CombinedScore = (Vec<ScoreDetails>, Option<Vec<ScoreDetails>>);
fn compare_scores(left: &CombinedScore, right: &CombinedScore) -> Ordering {
let mut left_main_it = ScoreDetails::score_values(left.0.iter());
let mut left_sub_it =
ScoreDetails::score_values(left.1.as_ref().map(|x| x.iter()).into_iter().flatten());
let mut right_main_it = ScoreDetails::score_values(right.0.iter());
let mut right_sub_it =
ScoreDetails::score_values(right.1.as_ref().map(|x| x.iter()).into_iter().flatten());
let mut left_main = left_main_it.next();
let mut left_sub = left_sub_it.next();
let mut right_main = right_main_it.next();
let mut right_sub = right_sub_it.next();
loop {
let left =
take_best_score(&mut left_main, &mut left_sub, &mut left_main_it, &mut left_sub_it);
let right =
take_best_score(&mut right_main, &mut right_sub, &mut right_main_it, &mut right_sub_it);
match (left, right) {
(None, None) => return Ordering::Equal,
(None, Some(_)) => return Ordering::Less,
(Some(_), None) => return Ordering::Greater,
(Some(ScoreValue::Score(left)), Some(ScoreValue::Score(right))) => {
if (left - right).abs() <= f64::EPSILON {
continue;
}
return left.partial_cmp(&right).unwrap();
}
(Some(ScoreValue::Sort(left)), Some(ScoreValue::Sort(right))) => {
match left.partial_cmp(right).unwrap() {
Ordering::Equal => continue,
order => return order,
}
}
(Some(ScoreValue::GeoSort(left)), Some(ScoreValue::GeoSort(right))) => {
match left.partial_cmp(right).unwrap() {
Ordering::Equal => continue,
order => return order,
}
}
(Some(ScoreValue::Score(_)), Some(_)) => return Ordering::Greater,
(Some(_), Some(ScoreValue::Score(_))) => return Ordering::Less,
// if we have this, we're bad
(Some(ScoreValue::GeoSort(_)), Some(ScoreValue::Sort(_)))
| (Some(ScoreValue::Sort(_)), Some(ScoreValue::GeoSort(_))) => {
unreachable!("Unexpected geo and sort comparison")
}
}
}
}
fn take_best_score<'a>(
main_score: &mut Option<ScoreValue<'a>>,
sub_score: &mut Option<ScoreValue<'a>>,
main_it: &mut impl Iterator<Item = ScoreValue<'a>>,
sub_it: &mut impl Iterator<Item = ScoreValue<'a>>,
) -> Option<ScoreValue<'a>> {
match (*main_score, *sub_score) {
(Some(main), None) => {
*main_score = main_it.next();
Some(main)
}
(None, Some(sub)) => {
*sub_score = sub_it.next();
Some(sub)
}
(main @ Some(ScoreValue::Score(main_f)), sub @ Some(ScoreValue::Score(sub_v))) => {
// take max, both advance
*main_score = main_it.next();
*sub_score = sub_it.next();
if main_f >= sub_v {
main
} else {
sub
}
}
(main @ Some(ScoreValue::Score(_)), _) => {
*main_score = main_it.next();
main
}
(_, sub @ Some(ScoreValue::Score(_))) => {
*sub_score = sub_it.next();
sub
}
(main @ Some(ScoreValue::GeoSort(main_geo)), sub @ Some(ScoreValue::GeoSort(sub_geo))) => {
// take best advance both
*main_score = main_it.next();
*sub_score = sub_it.next();
if main_geo >= sub_geo {
main
} else {
sub
}
}
(main @ Some(ScoreValue::Sort(main_sort)), sub @ Some(ScoreValue::Sort(sub_sort))) => {
// take best advance both
*main_score = main_it.next();
*sub_score = sub_it.next();
if main_sort >= sub_sort {
main
} else {
sub
}
}
(
Some(ScoreValue::GeoSort(_) | ScoreValue::Sort(_)),
Some(ScoreValue::GeoSort(_) | ScoreValue::Sort(_)),
) => None,
(None, None) => None,
}
}
impl CombinedSearchResult {
fn new(main_results: SearchResult, ancillary_results: PartialSearchResult) -> Self {
let mut docid_scores = HashMap::new();
for (docid, score) in
main_results.documents_ids.iter().zip(main_results.document_scores.into_iter())
{
docid_scores.insert(*docid, (score, None));
}
for (docid, score) in ancillary_results
.documents_ids
.iter()
.zip(ancillary_results.document_scores.into_iter())
{
docid_scores
.entry(*docid)
.and_modify(|(_main_score, ancillary_score)| *ancillary_score = Some(score));
}
let mut document_scores: Vec<_> = docid_scores.into_iter().collect();
document_scores.sort_by(|(_, left), (_, right)| compare_scores(left, right).reverse());
Self {
matching_words: main_results.matching_words,
candidates: main_results.candidates,
document_scores,
}
}
fn merge(left: Self, right: Self, from: usize, length: usize) -> SearchResult {
let mut documents_ids =
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
let mut document_scores =
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
let mut documents_seen = RoaringBitmap::new();
for (docid, (main_score, _sub_score)) in left
.document_scores
.into_iter()
.merge_by(right.document_scores.into_iter(), |(_, left), (_, right)| {
// the first value is the one with the greatest score
compare_scores(left, right).is_ge()
})
// remove documents we already saw
.filter(|(docid, _)| documents_seen.insert(*docid))
// start skipping **after** the filter
.skip(from)
// take **after** skipping
.take(length)
{
documents_ids.push(docid);
// TODO: pass both scores to documents_score in some way?
document_scores.push(main_score);
}
SearchResult {
matching_words: left.matching_words,
candidates: left.candidates | right.candidates,
documents_ids,
document_scores,
}
}
}
impl<'a> Search<'a> {
pub fn execute_hybrid(&self) -> Result<SearchResult> {
// TODO: find classier way to achieve that than to reset vector and query params
// create separate keyword and semantic searches
let mut search = Search {
query: self.query.clone(),
vector: self.vector.clone(),
filter: self.filter.clone(),
offset: 0,
limit: self.limit + self.offset,
sort_criteria: self.sort_criteria.clone(),
searchable_attributes: self.searchable_attributes,
geo_strategy: self.geo_strategy,
terms_matching_strategy: self.terms_matching_strategy,
scoring_strategy: ScoringStrategy::Detailed,
words_limit: self.words_limit,
exhaustive_number_hits: self.exhaustive_number_hits,
rtxn: self.rtxn,
index: self.index,
};
let vector_query = search.vector.take();
let keyword_query = self.query.as_deref();
let keyword_results = search.execute()?;
// skip semantic search if we don't have a vector query (placeholder search)
let Some(vector_query) = vector_query else {
return Ok(keyword_results);
};
// completely skip semantic search if the results of the keyword search are good enough
if self.results_good_enough(&keyword_results) {
return Ok(keyword_results);
}
search.vector = Some(vector_query);
search.query = None;
// TODO: would be better to have two distinct functions at this point
let vector_results = search.execute()?;
// Compute keyword scores for vector_results
let keyword_results_for_vector =
self.keyword_results_for_vector(keyword_query, &vector_results)?;
// compute vector scores for keyword_results
let vector_results_for_keyword =
// can unwrap because we returned already if there was no vector query
self.vector_results_for_keyword(search.vector.as_ref().unwrap(), &keyword_results)?;
let keyword_results =
CombinedSearchResult::new(keyword_results, vector_results_for_keyword);
let vector_results = CombinedSearchResult::new(vector_results, keyword_results_for_vector);
let merge_results =
CombinedSearchResult::merge(vector_results, keyword_results, self.offset, self.limit);
assert!(merge_results.documents_ids.len() <= self.limit);
Ok(merge_results)
}
fn vector_results_for_keyword(
&self,
vector: &[f32],
keyword_results: &SearchResult,
) -> Result<PartialSearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
if let Some(searchable_attributes) = self.searchable_attributes {
ctx.searchable_attributes(searchable_attributes)?;
}
let universe = keyword_results.documents_ids.iter().collect();
execute_vector_search(
&mut ctx,
vector,
ScoringStrategy::Detailed,
universe,
&self.sort_criteria,
self.geo_strategy,
0,
self.limit + self.offset,
)
}
fn keyword_results_for_vector(
&self,
query: Option<&str>,
vector_results: &SearchResult,
) -> Result<PartialSearchResult> {
let mut ctx = SearchContext::new(self.index, self.rtxn);
if let Some(searchable_attributes) = self.searchable_attributes {
ctx.searchable_attributes(searchable_attributes)?;
}
let universe = vector_results.documents_ids.iter().collect();
execute_search(
&mut ctx,
query,
self.terms_matching_strategy,
ScoringStrategy::Detailed,
self.exhaustive_number_hits,
universe,
&self.sort_criteria,
self.geo_strategy,
0,
self.limit + self.offset,
Some(self.words_limit),
&mut DefaultSearchLogger,
&mut DefaultSearchLogger,
)
}
fn results_good_enough(&self, keyword_results: &SearchResult) -> bool {
const GOOD_ENOUGH_SCORE: f64 = 0.9;
// 1. we check that we got a sufficient number of results
if keyword_results.document_scores.len() < self.limit + self.offset {
return false;
}
// 2. and that all results have a good enough score.
// we need to check all results because due to sort like rules, they're not necessarily in relevancy order
for score in &keyword_results.document_scores {
let score = ScoreDetails::global_score(score.iter());
if score < GOOD_ENOUGH_SCORE {
return false;
}
}
true
}
}