meilisearch/milli/src/search/new/ranking_rules.rs
2023-03-20 09:41:56 +01:00

591 lines
22 KiB
Rust

use super::logger::SearchLogger;
use super::QueryGraph;
use super::SearchContext;
use crate::new::graph_based_ranking_rule::GraphBasedRankingRule;
use crate::new::ranking_rule_graph::ProximityGraph;
use crate::new::ranking_rule_graph::TypoGraph;
use crate::new::words::Words;
use roaring::RoaringBitmap;
// use crate::search::new::sort::Sort;
use crate::{Result, TermsMatchingStrategy};
pub trait RankingRuleOutputIter<'search, Query> {
fn next_bucket(&mut self) -> Result<Option<RankingRuleOutput<Query>>>;
}
pub struct RankingRuleOutputIterWrapper<'search, Query> {
iter: Box<dyn Iterator<Item = Result<RankingRuleOutput<Query>>> + 'search>,
}
impl<'search, Query> RankingRuleOutputIterWrapper<'search, Query> {
pub fn new(iter: Box<dyn Iterator<Item = Result<RankingRuleOutput<Query>>> + 'search>) -> Self {
Self { iter }
}
}
impl<'search, Query> RankingRuleOutputIter<'search, Query>
for RankingRuleOutputIterWrapper<'search, Query>
{
fn next_bucket(&mut self) -> Result<Option<RankingRuleOutput<Query>>> {
match self.iter.next() {
Some(x) => x.map(Some),
None => Ok(None),
}
}
}
pub trait RankingRuleQueryTrait: Sized + Clone + 'static {}
#[derive(Clone)]
pub struct PlaceholderQuery;
impl RankingRuleQueryTrait for PlaceholderQuery {}
impl RankingRuleQueryTrait for QueryGraph {}
pub trait RankingRule<'search, Query: RankingRuleQueryTrait> {
fn id(&self) -> String;
/// Prepare the ranking rule such that it can start iterating over its
/// buckets using [`next_bucket`](RankingRule::next_bucket).
///
/// The given universe is the universe that will be given to [`next_bucket`](RankingRule::next_bucket).
fn start_iteration(
&mut self,
ctx: &mut SearchContext<'search>,
logger: &mut dyn SearchLogger<Query>,
universe: &RoaringBitmap,
query: &Query,
) -> Result<()>;
/// Return the next bucket of this ranking rule.
///
/// The returned candidates MUST be a subset of the given universe.
///
/// The universe given as argument is either:
/// - a subset of the universe given to the previous call to [`next_bucket`](RankingRule::next_bucket); OR
/// - the universe given to [`start_iteration`](RankingRule::start_iteration)
fn next_bucket(
&mut self,
ctx: &mut SearchContext<'search>,
logger: &mut dyn SearchLogger<Query>,
universe: &RoaringBitmap,
) -> Result<Option<RankingRuleOutput<Query>>>;
/// Finish iterating over the buckets, which yields control to the parent ranking rule
/// The next call to this ranking rule, if any, will be [`start_iteration`](RankingRule::start_iteration).
fn end_iteration(
&mut self,
ctx: &mut SearchContext<'search>,
logger: &mut dyn SearchLogger<Query>,
);
}
#[derive(Debug)]
pub struct RankingRuleOutput<Q> {
/// The query corresponding to the current bucket for the child ranking rule
pub query: Q,
/// The allowed candidates for the child ranking rule
pub candidates: RoaringBitmap,
}
// TODO: can make it generic over the query type (either query graph or placeholder) fairly easily
#[allow(clippy::too_many_arguments)]
pub fn apply_ranking_rules<'search>(
ctx: &mut SearchContext<'search>,
// TODO: ranking rules parameter
query_graph: &QueryGraph,
universe: &RoaringBitmap,
from: usize,
length: usize,
logger: &mut dyn SearchLogger<QueryGraph>,
) -> Result<Vec<u32>> {
logger.initial_query(query_graph);
let words = &mut Words::new(TermsMatchingStrategy::Last);
// let sort = &mut Sort::new(index, txn, "release_date".to_owned(), true)?;
let proximity = &mut GraphBasedRankingRule::<ProximityGraph>::new("proximity".to_owned());
let typo = &mut GraphBasedRankingRule::<TypoGraph>::new("typo".to_owned());
// TODO: ranking rules given as argument
let mut ranking_rules: Vec<&mut dyn RankingRule<'search, QueryGraph>> =
vec![words, typo, proximity /*sort*/];
logger.ranking_rules(&ranking_rules);
if universe.len() < from as u64 {
return Ok(vec![]);
}
let ranking_rules_len = ranking_rules.len();
logger.start_iteration_ranking_rule(0, ranking_rules[0], query_graph, universe);
ranking_rules[0].start_iteration(ctx, logger, universe, query_graph)?;
let mut candidates = vec![RoaringBitmap::default(); ranking_rules_len];
candidates[0] = universe.clone();
let mut cur_ranking_rule_index = 0;
macro_rules! back {
() => {
assert!(candidates[cur_ranking_rule_index].is_empty());
logger.end_iteration_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index],
&candidates[cur_ranking_rule_index],
);
candidates[cur_ranking_rule_index].clear();
ranking_rules[cur_ranking_rule_index].end_iteration(ctx, logger);
if cur_ranking_rule_index == 0 {
break;
} else {
cur_ranking_rule_index -= 1;
}
};
}
let mut results = vec![];
let mut cur_offset = 0usize;
// Add the candidates to the results. Take the `from`, `limit`, and `cur_offset`
// into account and inform the logger.
macro_rules! maybe_add_to_results {
($candidates:expr) => {
let candidates = $candidates;
let len = candidates.len();
// if the candidates are empty, there is nothing to do;
if !candidates.is_empty() {
if cur_offset < from {
if cur_offset + (candidates.len() as usize) < from {
logger.skip_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index],
&candidates,
);
} else {
let all_candidates = candidates.iter().collect::<Vec<_>>();
let (skipped_candidates, candidates) =
all_candidates.split_at(from - cur_offset);
logger.skip_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index],
&skipped_candidates.into_iter().collect(),
);
let candidates = candidates
.iter()
.take(length - results.len())
.copied()
.collect::<Vec<_>>();
logger.add_to_results(&candidates);
results.extend(&candidates);
}
} else {
let candidates =
candidates.iter().take(length - results.len()).collect::<Vec<_>>();
logger.add_to_results(&candidates);
results.extend(&candidates);
}
}
cur_offset += len as usize;
};
}
while results.len() < length {
// The universe for this bucket is zero or one element, so we don't need to sort
// anything, just extend the results and go back to the parent ranking rule.
if candidates[cur_ranking_rule_index].len() <= 1 {
maybe_add_to_results!(&candidates[cur_ranking_rule_index]);
candidates[cur_ranking_rule_index].clear();
back!();
continue;
}
let Some(next_bucket) = ranking_rules[cur_ranking_rule_index].next_bucket(ctx, logger, &candidates[cur_ranking_rule_index])? else {
// TODO: add remaining candidates automatically here?
back!();
continue;
};
logger.next_bucket_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index],
&candidates[cur_ranking_rule_index],
&next_bucket.candidates,
);
assert!(candidates[cur_ranking_rule_index].is_superset(&next_bucket.candidates));
candidates[cur_ranking_rule_index] -= &next_bucket.candidates;
if cur_ranking_rule_index == ranking_rules_len - 1
|| next_bucket.candidates.len() <= 1
|| cur_offset + (next_bucket.candidates.len() as usize) < from
{
maybe_add_to_results!(&next_bucket.candidates);
continue;
}
cur_ranking_rule_index += 1;
candidates[cur_ranking_rule_index] = next_bucket.candidates.clone();
logger.start_iteration_ranking_rule(
cur_ranking_rule_index,
ranking_rules[cur_ranking_rule_index],
&next_bucket.query,
&candidates[cur_ranking_rule_index],
);
ranking_rules[cur_ranking_rule_index].start_iteration(
ctx,
logger,
&next_bucket.candidates,
&next_bucket.query,
)?;
}
Ok(results)
}
#[cfg(test)]
mod tests {
// use crate::allocator::ALLOC;
use crate::documents::{DocumentsBatchBuilder, DocumentsBatchReader};
use crate::new::{execute_search, SearchContext};
use big_s::S;
use heed::EnvOpenOptions;
use maplit::hashset;
use std::fs::File;
use std::io::{BufRead, BufReader, Cursor, Seek};
use std::time::Instant;
// use crate::new::logger::detailed::DetailedSearchLogger;
use crate::new::logger::DefaultSearchLogger;
use crate::update::{IndexDocuments, IndexDocumentsConfig, IndexerConfig, Settings};
use crate::{Criterion, Index, Object, Search, TermsMatchingStrategy};
#[test]
fn search_wiki_new() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_wiki").unwrap();
let txn = index.read_txn().unwrap();
println!("nbr docids: {}", index.documents_ids(&txn).unwrap().len());
// loop {
let start = Instant::now();
// let mut logger = crate::new::logger::detailed::DetailedSearchLogger::new("log");
let mut ctx = SearchContext::new(&index, &txn);
let results = execute_search(
&mut ctx,
"which a the releases from poison by the government",
None,
0,
20,
&mut DefaultSearchLogger,
// &mut logger,
)
.unwrap();
// logger.write_d2_description(&mut ctx);
let elapsed = start.elapsed();
println!("{}us", elapsed.as_micros());
let _documents = index
.documents(&txn, results.iter().copied())
.unwrap()
.into_iter()
.map(|(id, obkv)| {
let mut object = serde_json::Map::default();
for (fid, fid_name) in index.fields_ids_map(&txn).unwrap().iter() {
let value = obkv.get(fid).unwrap();
let value: serde_json::Value = serde_json::from_slice(value).unwrap();
object.insert(fid_name.to_owned(), value);
}
(id, serde_json::to_string_pretty(&object).unwrap())
})
.collect::<Vec<_>>();
println!("{}us: {:?}", elapsed.as_micros(), results);
// }
// for (id, _document) in documents {
// println!("{id}:");
// // println!("{document}");
// }
}
#[test]
fn search_wiki_old() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_wiki").unwrap();
let txn = index.read_txn().unwrap();
let rr = index.criteria(&txn).unwrap();
println!("{rr:?}");
let start = Instant::now();
let mut s = Search::new(&txn, &index);
s.query("which a the releases from poison by the government");
s.terms_matching_strategy(TermsMatchingStrategy::Last);
s.criterion_implementation_strategy(crate::CriterionImplementationStrategy::OnlySetBased);
let docs = s.execute().unwrap();
let elapsed = start.elapsed();
let documents = index
.documents(&txn, docs.documents_ids.iter().copied())
.unwrap()
.into_iter()
.map(|(id, obkv)| {
let mut object = serde_json::Map::default();
for (fid, fid_name) in index.fields_ids_map(&txn).unwrap().iter() {
let value = obkv.get(fid).unwrap();
let value: serde_json::Value = serde_json::from_slice(value).unwrap();
object.insert(fid_name.to_owned(), value);
}
(id, serde_json::to_string_pretty(&object).unwrap())
})
.collect::<Vec<_>>();
println!("{}us: {:?}", elapsed.as_micros(), docs.documents_ids);
for (id, _document) in documents {
println!("{id}:");
// println!("{document}");
}
}
#[test]
fn search_movies_new() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_movies").unwrap();
let txn = index.read_txn().unwrap();
// let primary_key = index.primary_key(&txn).unwrap().unwrap();
// let primary_key = index.fields_ids_map(&txn).unwrap().id(primary_key).unwrap();
// loop {
let start = Instant::now();
let mut logger = crate::new::logger::detailed::DetailedSearchLogger::new("log");
let mut ctx = SearchContext::new(&index, &txn);
let results = execute_search(
&mut ctx,
"releases from poison by the government",
None,
0,
20,
// &mut DefaultSearchLogger,
&mut logger,
)
.unwrap();
logger.write_d2_description(&mut ctx);
let elapsed = start.elapsed();
// let ids = index
// .documents(&txn, results.iter().copied())
// .unwrap()
// .into_iter()
// .map(|x| {
// let obkv = &x.1;
// let id = obkv.get(primary_key).unwrap();
// let id: serde_json::Value = serde_json::from_slice(id).unwrap();
// id.as_str().unwrap().to_owned()
// })
// .collect::<Vec<_>>();
println!("{}us: {results:?}", elapsed.as_micros());
// println!("external ids: {ids:?}");
// }
}
#[test]
fn search_movies_old() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_movies").unwrap();
let txn = index.read_txn().unwrap();
let rr = index.criteria(&txn).unwrap();
println!("{rr:?}");
let primary_key = index.primary_key(&txn).unwrap().unwrap();
let primary_key = index.fields_ids_map(&txn).unwrap().id(primary_key).unwrap();
let start = Instant::now();
let mut s = Search::new(&txn, &index);
s.query("which a the releases from poison by the government");
s.terms_matching_strategy(TermsMatchingStrategy::Last);
s.criterion_implementation_strategy(crate::CriterionImplementationStrategy::OnlySetBased);
let docs = s.execute().unwrap();
let elapsed = start.elapsed();
let ids = index
.documents(&txn, docs.documents_ids.iter().copied())
.unwrap()
.into_iter()
.map(|x| {
let obkv = &x.1;
let id = obkv.get(primary_key).unwrap();
let id: serde_json::Value = serde_json::from_slice(id).unwrap();
id.as_str().unwrap().to_owned()
})
.collect::<Vec<_>>();
println!("{}us: {:?}", elapsed.as_micros(), docs.documents_ids);
println!("external ids: {ids:?}");
}
#[test]
fn _settings_movies() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_movies").unwrap();
let mut wtxn = index.write_txn().unwrap();
let config = IndexerConfig::default();
let mut builder = Settings::new(&mut wtxn, &index, &config);
builder.set_min_word_len_one_typo(5);
builder.set_min_word_len_two_typos(100);
builder.set_sortable_fields(hashset! { S("release_date") });
builder.set_criteria(vec![
Criterion::Words,
Criterion::Typo,
Criterion::Proximity,
Criterion::Asc("release_date".to_owned()),
]);
builder.execute(|_| (), || false).unwrap();
wtxn.commit().unwrap();
}
#[test]
fn _index_movies() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_movies").unwrap();
let mut wtxn = index.write_txn().unwrap();
let primary_key = "id";
let searchable_fields = vec!["title", "overview"];
let filterable_fields = vec!["release_date", "genres"];
let config = IndexerConfig::default();
let mut builder = Settings::new(&mut wtxn, &index, &config);
builder.set_primary_key(primary_key.to_owned());
let searchable_fields = searchable_fields.iter().map(|s| s.to_string()).collect();
builder.set_searchable_fields(searchable_fields);
let filterable_fields = filterable_fields.iter().map(|s| s.to_string()).collect();
builder.set_filterable_fields(filterable_fields);
builder.set_min_word_len_one_typo(5);
builder.set_min_word_len_two_typos(100);
builder.set_criteria(vec![Criterion::Words, Criterion::Proximity]);
builder.execute(|_| (), || false).unwrap();
let config = IndexerConfig::default();
let indexing_config = IndexDocumentsConfig::default();
let builder =
IndexDocuments::new(&mut wtxn, &index, &config, indexing_config, |_| (), || false)
.unwrap();
let documents = documents_from(
"/Users/meilisearch/Documents/milli2/benchmarks/datasets/movies.json",
"json",
);
let (builder, user_error) = builder.add_documents(documents).unwrap();
user_error.unwrap();
builder.execute().unwrap();
wtxn.commit().unwrap();
index.prepare_for_closing().wait();
}
#[test]
fn _index_wiki() {
let mut options = EnvOpenOptions::new();
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
let index = Index::new(options, "data_wiki").unwrap();
let mut wtxn = index.write_txn().unwrap();
// let primary_key = "id";
let searchable_fields = vec!["body", "title", "url"];
// let filterable_fields = vec![];
let config = IndexerConfig::default();
let mut builder = Settings::new(&mut wtxn, &index, &config);
// builder.set_primary_key(primary_key.to_owned());
let searchable_fields = searchable_fields.iter().map(|s| s.to_string()).collect();
builder.set_searchable_fields(searchable_fields);
// let filterable_fields = filterable_fields.iter().map(|s| s.to_string()).collect();
// builder.set_filterable_fields(filterable_fields);
// builder.set_min_word_len_one_typo(5);
// builder.set_min_word_len_two_typos(100);
builder.set_criteria(vec![Criterion::Words, Criterion::Typo, Criterion::Proximity]);
builder.execute(|_| (), || false).unwrap();
let config = IndexerConfig::default();
let indexing_config =
IndexDocumentsConfig { autogenerate_docids: true, ..Default::default() };
let builder =
IndexDocuments::new(&mut wtxn, &index, &config, indexing_config, |_| (), || false)
.unwrap();
let documents = documents_from(
"/Users/meilisearch/Documents/milli2/benchmarks/datasets/smol-wiki-articles.csv",
"csv",
);
let (builder, user_error) = builder.add_documents(documents).unwrap();
user_error.unwrap();
builder.execute().unwrap();
wtxn.commit().unwrap();
index.prepare_for_closing().wait();
}
fn documents_from(filename: &str, filetype: &str) -> DocumentsBatchReader<impl BufRead + Seek> {
let reader = File::open(filename)
.unwrap_or_else(|_| panic!("could not find the dataset in: {}", filename));
let reader = BufReader::new(reader);
let documents = match filetype {
"csv" => documents_from_csv(reader).unwrap(),
"json" => documents_from_json(reader).unwrap(),
"jsonl" => documents_from_jsonl(reader).unwrap(),
otherwise => panic!("invalid update format {:?}", otherwise),
};
DocumentsBatchReader::from_reader(Cursor::new(documents)).unwrap()
}
fn documents_from_jsonl(reader: impl BufRead) -> crate::Result<Vec<u8>> {
let mut documents = DocumentsBatchBuilder::new(Vec::new());
for result in serde_json::Deserializer::from_reader(reader).into_iter::<Object>() {
let object = result.unwrap();
documents.append_json_object(&object)?;
}
documents.into_inner().map_err(Into::into)
}
fn documents_from_json(reader: impl BufRead) -> crate::Result<Vec<u8>> {
let mut documents = DocumentsBatchBuilder::new(Vec::new());
documents.append_json_array(reader)?;
documents.into_inner().map_err(Into::into)
}
fn documents_from_csv(reader: impl BufRead) -> crate::Result<Vec<u8>> {
let csv = csv::Reader::from_reader(reader);
let mut documents = DocumentsBatchBuilder::new(Vec::new());
documents.append_csv(csv)?;
documents.into_inner().map_err(Into::into)
}
}