meilisearch/src/best_proximity.rs
2020-06-11 11:55:03 +02:00

201 lines
6.7 KiB
Rust

use std::cmp;
use std::time::Instant;
use pathfinding::directed::dijkstra::dijkstra;
use smallvec::smallvec; // the macro
use crate::SmallVec16;
const ONE_ATTRIBUTE: u32 = 1000;
const MAX_DISTANCE: u32 = 8;
fn index_proximity(lhs: u32, rhs: u32) -> u32 {
if lhs <= rhs {
cmp::min(rhs - lhs, MAX_DISTANCE)
} else {
cmp::min(lhs - rhs, MAX_DISTANCE) + 1
}
}
fn positions_proximity(lhs: u32, rhs: u32) -> u32 {
let (lhs_attr, lhs_index) = extract_position(lhs);
let (rhs_attr, rhs_index) = extract_position(rhs);
if lhs_attr != rhs_attr { MAX_DISTANCE }
else { index_proximity(lhs_index, rhs_index) }
}
// Returns the attribute and index parts.
fn extract_position(position: u32) -> (u32, u32) {
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
}
#[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
struct Path(SmallVec16<u32>);
impl Path {
fn new(positions: &[Vec<u32>]) -> Option<Path> {
let position = positions.first()?.first()?;
Some(Path(smallvec![*position]))
}
// TODO we must skip the successors that have already been sent
fn successors(&self, positions: &[Vec<u32>]) -> SmallVec16<(Path, u32)> {
let mut successors = SmallVec16::new();
// If we can grow or shift the path
if self.0.len() < positions.len() {
for next_pos in &positions[self.0.len()] {
let mut grown_path = self.0.clone();
grown_path.push(*next_pos);
let path = Path(grown_path);
let proximity = path.proximity();
successors.push((path, proximity));
}
}
// We retrieve the tail of the current path and try to find
// the successor of this tail.
let next_path_tail = self.0.last().unwrap() + 1;
// To do so we add 1 to the tail and check that something exists.
let path_tail_index = positions[self.0.len() - 1].binary_search(&next_path_tail).unwrap_or_else(|p| p);
// If we found something it means that we can shift the path.
if let Some(pos) = positions[self.0.len() - 1].get(path_tail_index) {
let mut shifted_path = self.0.clone();
*shifted_path.last_mut().unwrap() = *pos;
let path = Path(shifted_path);
let proximity = path.proximity();
successors.push((path, proximity));
}
successors
}
fn proximity(&self) -> u32 {
self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
positions.len() == self.0.len()
}
}
pub struct BestProximity {
positions: Vec<Vec<u32>>,
best_proximity: u32,
}
impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
BestProximity { positions, best_proximity: 0 }
}
fn is_path_successful(&self, path: &Path) -> bool {
path.is_complete(&self.positions) && path.proximity() >= self.best_proximity
}
}
impl Iterator for BestProximity {
type Item = (u32, Vec<Vec<u32>>);
fn next(&mut self) -> Option<Self::Item> {
let mut output: Option<(u32, Vec<Vec<u32>>)> = None;
let before = Instant::now();
loop {
let result = dijkstra(
&Path::new(&self.positions)?,
|p| p.successors(&self.positions),
|p| {
self.is_path_successful(p) &&
output.as_ref().map_or(true, |(_, paths)| {
!paths.iter().position(|q| q.as_slice() == p.0.as_slice()).is_some()
})
},
);
match result {
Some((mut paths, _)) => {
let positions = paths.pop().unwrap();
let proximity = positions.proximity();
// If the current output is
match &mut output {
Some((best_proximity, paths)) => {
// If the shortest path we found is bigger than the one requested
// it means that we found all the paths with the same proximity and can
// return those to the user.
if proximity > *best_proximity {
break;
}
// We add the new path to the output list as this path is known
// to be the requested distance.
paths.push(positions.0.to_vec());
},
None => output = Some((positions.proximity(), vec![positions.0.to_vec()])),
}
},
None => break,
}
}
eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
if let Some((proximity, _)) = output.as_ref() {
self.best_proximity = proximity + 1;
}
output
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn same_attribute() {
let positions = vec![
vec![0, 2, 3, 4 ],
vec![ 1, ],
vec![ 3, 6],
];
let mut iter = BestProximity::new(positions);
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(), Some((3+2, vec![vec![3, 1, 3]]))); // 5
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6], vec![4, 1, 3]]))); // 6
assert_eq!(iter.next(), Some((2+5, vec![vec![2, 1, 6]]))); // 7
assert_eq!(iter.next(), Some((3+5, vec![vec![3, 1, 6]]))); // 8
assert_eq!(iter.next(), Some((4+5, vec![vec![4, 1, 6]]))); // 9
assert_eq!(iter.next(), None);
}
#[test]
fn different_attributes() {
let positions = vec![
vec![0, 2, 1000, 1001, 2000 ],
vec![ 1, 1000, 2001 ],
vec![ 3, 6, 2002, 3000],
];
let mut iter = BestProximity::new(positions);
assert_eq!(iter.next(), Some((1+1, vec![vec![2000, 2001, 2002]]))); // 2
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6]]))); // 6
// We ignore others here...
}
#[test]
fn easy_proximities() {
fn slice_proximity(positions: &[u32]) -> u32 {
positions.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
assert_eq!(slice_proximity(&[1000, 1000, 2002]), 8);
}
}