use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet}; use std::convert::TryInto; use std::result::Result as StdResult; use std::sync::Arc; use charabia::{Normalize, Tokenizer, TokenizerBuilder}; use deserr::{DeserializeError, Deserr}; use itertools::{EitherOrBoth, Itertools}; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use time::OffsetDateTime; use super::index_documents::{IndexDocumentsConfig, Transform}; use super::IndexerConfig; use crate::criterion::Criterion; use crate::error::UserError; use crate::index::{DEFAULT_MIN_WORD_LEN_ONE_TYPO, DEFAULT_MIN_WORD_LEN_TWO_TYPOS}; use crate::order_by_map::OrderByMap; use crate::proximity::ProximityPrecision; use crate::update::index_documents::IndexDocumentsMethod; use crate::update::{IndexDocuments, UpdateIndexingStep}; use crate::vector::settings::{check_set, check_unset, EmbedderSource, EmbeddingSettings}; use crate::vector::{Embedder, EmbeddingConfig, EmbeddingConfigs}; use crate::{FieldId, FieldsIdsMap, Index, Result}; #[derive(Debug, Clone, PartialEq, Eq, Copy)] pub enum Setting { Set(T), Reset, NotSet, } impl Deserr for Setting where T: Deserr, E: DeserializeError, { fn deserialize_from_value( value: deserr::Value, location: deserr::ValuePointerRef, ) -> std::result::Result { match value { deserr::Value::Null => Ok(Setting::Reset), _ => T::deserialize_from_value(value, location).map(Setting::Set), } } } impl Default for Setting { fn default() -> Self { Self::NotSet } } impl Setting { pub fn set(self) -> Option { match self { Self::Set(value) => Some(value), _ => None, } } pub const fn as_ref(&self) -> Setting<&T> { match *self { Self::Set(ref value) => Setting::Set(value), Self::Reset => Setting::Reset, Self::NotSet => Setting::NotSet, } } pub const fn is_not_set(&self) -> bool { matches!(self, Self::NotSet) } /// If `Self` is `Reset`, then map self to `Set` with the provided `val`. pub fn or_reset(self, val: T) -> Self { match self { Self::Reset => Self::Set(val), otherwise => otherwise, } } /// Returns `true` if applying the new setting changed this setting pub fn apply(&mut self, new: Self) -> bool where T: PartialEq + Eq, { if let Setting::NotSet = new { return false; } if self == &new { return false; } *self = new; true } } impl Serialize for Setting { fn serialize(&self, serializer: S) -> StdResult where S: Serializer, { match self { Self::Set(value) => Some(value), // Usually not_set isn't serialized by setting skip_serializing_if field attribute Self::NotSet | Self::Reset => None, } .serialize(serializer) } } impl<'de, T: Deserialize<'de>> Deserialize<'de> for Setting { fn deserialize(deserializer: D) -> StdResult where D: Deserializer<'de>, { Deserialize::deserialize(deserializer).map(|x| match x { Some(x) => Self::Set(x), None => Self::Reset, // Reset is forced by sending null value }) } } pub struct Settings<'a, 't, 'i> { wtxn: &'t mut heed::RwTxn<'i>, index: &'i Index, indexer_config: &'a IndexerConfig, searchable_fields: Setting>, displayed_fields: Setting>, filterable_fields: Setting>, sortable_fields: Setting>, criteria: Setting>, stop_words: Setting>, non_separator_tokens: Setting>, separator_tokens: Setting>, dictionary: Setting>, distinct_field: Setting, synonyms: Setting>>, primary_key: Setting, authorize_typos: Setting, min_word_len_two_typos: Setting, min_word_len_one_typo: Setting, exact_words: Setting>, /// Attributes on which typo tolerance is disabled. exact_attributes: Setting>, max_values_per_facet: Setting, sort_facet_values_by: Setting, pagination_max_total_hits: Setting, proximity_precision: Setting, embedder_settings: Setting>>, search_cutoff: Setting, } impl<'a, 't, 'i> Settings<'a, 't, 'i> { pub fn new( wtxn: &'t mut heed::RwTxn<'i>, index: &'i Index, indexer_config: &'a IndexerConfig, ) -> Settings<'a, 't, 'i> { Settings { wtxn, index, searchable_fields: Setting::NotSet, displayed_fields: Setting::NotSet, filterable_fields: Setting::NotSet, sortable_fields: Setting::NotSet, criteria: Setting::NotSet, stop_words: Setting::NotSet, non_separator_tokens: Setting::NotSet, separator_tokens: Setting::NotSet, dictionary: Setting::NotSet, distinct_field: Setting::NotSet, synonyms: Setting::NotSet, primary_key: Setting::NotSet, authorize_typos: Setting::NotSet, exact_words: Setting::NotSet, min_word_len_two_typos: Setting::NotSet, min_word_len_one_typo: Setting::NotSet, exact_attributes: Setting::NotSet, max_values_per_facet: Setting::NotSet, sort_facet_values_by: Setting::NotSet, pagination_max_total_hits: Setting::NotSet, proximity_precision: Setting::NotSet, embedder_settings: Setting::NotSet, search_cutoff: Setting::NotSet, indexer_config, } } pub fn reset_searchable_fields(&mut self) { self.searchable_fields = Setting::Reset; } pub fn set_searchable_fields(&mut self, names: Vec) { self.searchable_fields = Setting::Set(names); } pub fn reset_displayed_fields(&mut self) { self.displayed_fields = Setting::Reset; } pub fn set_displayed_fields(&mut self, names: Vec) { self.displayed_fields = Setting::Set(names); } pub fn reset_filterable_fields(&mut self) { self.filterable_fields = Setting::Reset; } pub fn set_filterable_fields(&mut self, names: HashSet) { self.filterable_fields = Setting::Set(names); } pub fn set_sortable_fields(&mut self, names: HashSet) { self.sortable_fields = Setting::Set(names); } pub fn reset_sortable_fields(&mut self) { self.sortable_fields = Setting::Reset; } pub fn reset_criteria(&mut self) { self.criteria = Setting::Reset; } pub fn set_criteria(&mut self, criteria: Vec) { self.criteria = Setting::Set(criteria); } pub fn reset_stop_words(&mut self) { self.stop_words = Setting::Reset; } pub fn set_stop_words(&mut self, stop_words: BTreeSet) { self.stop_words = if stop_words.is_empty() { Setting::Reset } else { Setting::Set(stop_words) } } pub fn reset_non_separator_tokens(&mut self) { self.non_separator_tokens = Setting::Reset; } pub fn set_non_separator_tokens(&mut self, non_separator_tokens: BTreeSet) { self.non_separator_tokens = if non_separator_tokens.is_empty() { Setting::Reset } else { Setting::Set(non_separator_tokens) } } pub fn reset_separator_tokens(&mut self) { self.separator_tokens = Setting::Reset; } pub fn set_separator_tokens(&mut self, separator_tokens: BTreeSet) { self.separator_tokens = if separator_tokens.is_empty() { Setting::Reset } else { Setting::Set(separator_tokens) } } pub fn reset_dictionary(&mut self) { self.dictionary = Setting::Reset; } pub fn set_dictionary(&mut self, dictionary: BTreeSet) { self.dictionary = if dictionary.is_empty() { Setting::Reset } else { Setting::Set(dictionary) } } pub fn reset_distinct_field(&mut self) { self.distinct_field = Setting::Reset; } pub fn set_distinct_field(&mut self, distinct_field: String) { self.distinct_field = Setting::Set(distinct_field); } pub fn reset_synonyms(&mut self) { self.synonyms = Setting::Reset; } pub fn set_synonyms(&mut self, synonyms: BTreeMap>) { self.synonyms = if synonyms.is_empty() { Setting::Reset } else { Setting::Set(synonyms) } } pub fn reset_primary_key(&mut self) { self.primary_key = Setting::Reset; } pub fn set_primary_key(&mut self, primary_key: String) { self.primary_key = Setting::Set(primary_key); } pub fn set_autorize_typos(&mut self, val: bool) { self.authorize_typos = Setting::Set(val); } pub fn reset_authorize_typos(&mut self) { self.authorize_typos = Setting::Reset; } pub fn set_min_word_len_two_typos(&mut self, val: u8) { self.min_word_len_two_typos = Setting::Set(val); } pub fn reset_min_word_len_two_typos(&mut self) { self.min_word_len_two_typos = Setting::Reset; } pub fn set_min_word_len_one_typo(&mut self, val: u8) { self.min_word_len_one_typo = Setting::Set(val); } pub fn reset_min_word_len_one_typo(&mut self) { self.min_word_len_one_typo = Setting::Reset; } pub fn set_exact_words(&mut self, words: BTreeSet) { self.exact_words = Setting::Set(words); } pub fn reset_exact_words(&mut self) { self.exact_words = Setting::Reset; } pub fn set_exact_attributes(&mut self, attrs: HashSet) { self.exact_attributes = Setting::Set(attrs); } pub fn reset_exact_attributes(&mut self) { self.exact_attributes = Setting::Reset; } pub fn set_max_values_per_facet(&mut self, value: usize) { self.max_values_per_facet = Setting::Set(value); } pub fn reset_max_values_per_facet(&mut self) { self.max_values_per_facet = Setting::Reset; } pub fn set_sort_facet_values_by(&mut self, value: OrderByMap) { self.sort_facet_values_by = Setting::Set(value); } pub fn reset_sort_facet_values_by(&mut self) { self.sort_facet_values_by = Setting::Reset; } pub fn set_pagination_max_total_hits(&mut self, value: usize) { self.pagination_max_total_hits = Setting::Set(value); } pub fn reset_pagination_max_total_hits(&mut self) { self.pagination_max_total_hits = Setting::Reset; } pub fn set_proximity_precision(&mut self, value: ProximityPrecision) { self.proximity_precision = Setting::Set(value); } pub fn reset_proximity_precision(&mut self) { self.proximity_precision = Setting::Reset; } pub fn set_embedder_settings(&mut self, value: BTreeMap>) { self.embedder_settings = Setting::Set(value); } pub fn reset_embedder_settings(&mut self) { self.embedder_settings = Setting::Reset; } pub fn set_search_cutoff(&mut self, value: u64) { self.search_cutoff = Setting::Set(value); } pub fn reset_search_cutoff(&mut self) { self.search_cutoff = Setting::Reset; } #[tracing::instrument( level = "trace" skip(self, progress_callback, should_abort, settings_diff), target = "indexing::documents" )] fn reindex( &mut self, progress_callback: &FP, should_abort: &FA, settings_diff: InnerIndexSettingsDiff, ) -> Result<()> where FP: Fn(UpdateIndexingStep) + Sync, FA: Fn() -> bool + Sync, { puffin::profile_function!(); // if the settings are set before any document update, we don't need to do anything, and // will set the primary key during the first document addition. if self.index.number_of_documents(self.wtxn)? == 0 { return Ok(()); } let transform = Transform::new( self.wtxn, self.index, self.indexer_config, IndexDocumentsMethod::ReplaceDocuments, false, )?; // We clear the databases and remap the documents fields based on the new `FieldsIdsMap`. let output = transform.prepare_for_documents_reindexing(self.wtxn, settings_diff)?; // We index the generated `TransformOutput` which must contain // all the documents with fields in the newly defined searchable order. let indexing_builder = IndexDocuments::new( self.wtxn, self.index, self.indexer_config, IndexDocumentsConfig::default(), &progress_callback, &should_abort, )?; indexing_builder.execute_raw(output)?; Ok(()) } fn update_displayed(&mut self) -> Result { match self.displayed_fields { Setting::Set(ref fields) => { // fields are deduplicated, only the first occurrence is taken into account let names: Vec<_> = fields.iter().unique().map(String::as_str).collect(); self.index.put_displayed_fields(self.wtxn, &names)?; } Setting::Reset => { self.index.delete_displayed_fields(self.wtxn)?; } Setting::NotSet => return Ok(false), } Ok(true) } fn update_distinct_field(&mut self) -> Result { match self.distinct_field { Setting::Set(ref attr) => { self.index.put_distinct_field(self.wtxn, attr)?; } Setting::Reset => { self.index.delete_distinct_field(self.wtxn)?; } Setting::NotSet => return Ok(false), } Ok(true) } /// Updates the index's searchable attributes. This causes the field map to be recomputed to /// reflect the order of the searchable attributes. fn update_searchable(&mut self) -> Result { match self.searchable_fields { Setting::Set(ref fields) => { // Check to see if the searchable fields changed before doing anything else let old_fields = self.index.searchable_fields(self.wtxn)?; let did_change = match old_fields { // If old_fields is Some, let's check to see if the fields actually changed Some(old_fields) => { let new_fields = fields.iter().map(String::as_str).collect::>(); new_fields != old_fields } // If old_fields is None, the fields have changed (because they are being set) None => true, }; if !did_change { return Ok(false); } // every time the searchable attributes are updated, we need to update the // ids for any settings that uses the facets. (distinct_fields, filterable_fields). let old_fields_ids_map = self.index.fields_ids_map(self.wtxn)?; let mut new_fields_ids_map = FieldsIdsMap::new(); // fields are deduplicated, only the first occurrence is taken into account let names = fields.iter().unique().map(String::as_str).collect::>(); // Add all the searchable attributes to the field map, and then add the // remaining fields from the old field map to the new one for name in names.iter() { new_fields_ids_map.insert(name).ok_or(UserError::AttributeLimitReached)?; } for (_, name) in old_fields_ids_map.iter() { new_fields_ids_map.insert(name).ok_or(UserError::AttributeLimitReached)?; } self.index.put_all_searchable_fields_from_fields_ids_map( self.wtxn, &names, &new_fields_ids_map, )?; self.index.put_fields_ids_map(self.wtxn, &new_fields_ids_map)?; Ok(true) } Setting::Reset => Ok(self.index.delete_all_searchable_fields(self.wtxn)?), Setting::NotSet => Ok(false), } } fn update_stop_words(&mut self) -> Result { match self.stop_words { Setting::Set(ref stop_words) => { let current = self.index.stop_words(self.wtxn)?; // Apply an unlossy normalization on stop_words let stop_words: BTreeSet = stop_words .iter() .map(|w| w.as_str().normalize(&Default::default()).into_owned()) .collect(); // since we can't compare a BTreeSet with an FST we are going to convert the // BTreeSet to an FST and then compare bytes per bytes the two FSTs. let fst = fst::Set::from_iter(stop_words.into_iter())?; // Does the new FST differ from the previous one? if current .map_or(true, |current| current.as_fst().as_bytes() != fst.as_fst().as_bytes()) { // we want to re-create our FST. self.index.put_stop_words(self.wtxn, &fst)?; Ok(true) } else { Ok(false) } } Setting::Reset => Ok(self.index.delete_stop_words(self.wtxn)?), Setting::NotSet => Ok(false), } } fn update_non_separator_tokens(&mut self) -> Result { let changes = match self.non_separator_tokens { Setting::Set(ref non_separator_tokens) => { let current = self.index.non_separator_tokens(self.wtxn)?; // Does the new list differ from the previous one? if current.map_or(true, |current| ¤t != non_separator_tokens) { self.index.put_non_separator_tokens(self.wtxn, non_separator_tokens)?; true } else { false } } Setting::Reset => self.index.delete_non_separator_tokens(self.wtxn)?, Setting::NotSet => false, }; // the synonyms must be updated if non separator tokens have been updated. if changes && self.synonyms == Setting::NotSet { self.synonyms = Setting::Set(self.index.user_defined_synonyms(self.wtxn)?); } Ok(changes) } fn update_separator_tokens(&mut self) -> Result { let changes = match self.separator_tokens { Setting::Set(ref separator_tokens) => { let current = self.index.separator_tokens(self.wtxn)?; // Does the new list differ from the previous one? if current.map_or(true, |current| ¤t != separator_tokens) { self.index.put_separator_tokens(self.wtxn, separator_tokens)?; true } else { false } } Setting::Reset => self.index.delete_separator_tokens(self.wtxn)?, Setting::NotSet => false, }; // the synonyms must be updated if separator tokens have been updated. if changes && self.synonyms == Setting::NotSet { self.synonyms = Setting::Set(self.index.user_defined_synonyms(self.wtxn)?); } Ok(changes) } fn update_dictionary(&mut self) -> Result { let changes = match self.dictionary { Setting::Set(ref dictionary) => { let current = self.index.dictionary(self.wtxn)?; // Does the new list differ from the previous one? if current.map_or(true, |current| ¤t != dictionary) { self.index.put_dictionary(self.wtxn, dictionary)?; true } else { false } } Setting::Reset => self.index.delete_dictionary(self.wtxn)?, Setting::NotSet => false, }; // the synonyms must be updated if dictionary has been updated. if changes && self.synonyms == Setting::NotSet { self.synonyms = Setting::Set(self.index.user_defined_synonyms(self.wtxn)?); } Ok(changes) } fn update_synonyms(&mut self) -> Result { match self.synonyms { Setting::Set(ref user_synonyms) => { fn normalize(tokenizer: &Tokenizer, text: &str) -> Vec { tokenizer .tokenize(text) .filter_map(|token| { if token.is_word() && !token.lemma().is_empty() { Some(token.lemma().to_string()) } else { None } }) .collect::>() } let mut builder = TokenizerBuilder::new(); let stop_words = self.index.stop_words(self.wtxn)?; if let Some(ref stop_words) = stop_words { builder.stop_words(stop_words); } let separators = self.index.allowed_separators(self.wtxn)?; let separators: Option> = separators.as_ref().map(|x| x.iter().map(String::as_str).collect()); if let Some(ref separators) = separators { builder.separators(separators); } let dictionary = self.index.dictionary(self.wtxn)?; let dictionary: Option> = dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect()); if let Some(ref dictionary) = dictionary { builder.words_dict(dictionary); } let tokenizer = builder.build(); let mut new_synonyms = HashMap::new(); for (word, synonyms) in user_synonyms { // Normalize both the word and associated synonyms. let normalized_word = normalize(&tokenizer, word); let normalized_synonyms: Vec<_> = synonyms .iter() .map(|synonym| normalize(&tokenizer, synonym)) .filter(|synonym| !synonym.is_empty()) .collect(); // Store the normalized synonyms under the normalized word, // merging the possible duplicate words. if !normalized_word.is_empty() && !normalized_synonyms.is_empty() { let entry = new_synonyms.entry(normalized_word).or_insert_with(Vec::new); entry.extend(normalized_synonyms.into_iter()); } } // Make sure that we don't have duplicate synonyms. new_synonyms.iter_mut().for_each(|(_, synonyms)| { synonyms.sort_unstable(); synonyms.dedup(); }); let old_synonyms = self.index.synonyms(self.wtxn)?; if new_synonyms != old_synonyms { self.index.put_synonyms(self.wtxn, &new_synonyms, user_synonyms)?; Ok(true) } else { Ok(false) } } Setting::Reset => Ok(self.index.delete_synonyms(self.wtxn)?), Setting::NotSet => Ok(false), } } fn update_exact_attributes(&mut self) -> Result { match self.exact_attributes { Setting::Set(ref attrs) => { let old_attrs = self.index.exact_attributes(self.wtxn)?; let old_attrs = old_attrs.into_iter().map(String::from).collect::>(); if attrs != &old_attrs { let attrs = attrs.iter().map(String::as_str).collect::>(); self.index.put_exact_attributes(self.wtxn, &attrs)?; Ok(true) } else { Ok(false) } } Setting::Reset => Ok(self.index.delete_exact_attributes(self.wtxn)?), Setting::NotSet => Ok(false), } } fn update_filterable(&mut self) -> Result<()> { match self.filterable_fields { Setting::Set(ref fields) => { let mut new_facets = HashSet::new(); for name in fields { new_facets.insert(name.clone()); } self.index.put_filterable_fields(self.wtxn, &new_facets)?; } Setting::Reset => { self.index.delete_filterable_fields(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_sortable(&mut self) -> Result<()> { match self.sortable_fields { Setting::Set(ref fields) => { let mut new_fields = HashSet::new(); for name in fields { new_fields.insert(name.clone()); } self.index.put_sortable_fields(self.wtxn, &new_fields)?; } Setting::Reset => { self.index.delete_sortable_fields(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_criteria(&mut self) -> Result<()> { match &self.criteria { Setting::Set(criteria) => { self.index.put_criteria(self.wtxn, criteria)?; } Setting::Reset => { self.index.delete_criteria(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_primary_key(&mut self) -> Result<()> { match self.primary_key { Setting::Set(ref primary_key) => { if self.index.number_of_documents(self.wtxn)? == 0 { let mut fields_ids_map = self.index.fields_ids_map(self.wtxn)?; fields_ids_map.insert(primary_key).ok_or(UserError::AttributeLimitReached)?; self.index.put_fields_ids_map(self.wtxn, &fields_ids_map)?; self.index.put_primary_key(self.wtxn, primary_key)?; Ok(()) } else { let curr_primary_key = self.index.primary_key(self.wtxn)?.unwrap().to_string(); if primary_key == &curr_primary_key { Ok(()) } else { Err(UserError::PrimaryKeyCannotBeChanged(curr_primary_key).into()) } } } Setting::Reset => { if self.index.number_of_documents(self.wtxn)? == 0 { self.index.delete_primary_key(self.wtxn)?; Ok(()) } else { let primary_key = self.index.primary_key(self.wtxn)?.unwrap(); Err(UserError::PrimaryKeyCannotBeChanged(primary_key.to_string()).into()) } } Setting::NotSet => Ok(()), } } fn update_authorize_typos(&mut self) -> Result<()> { match self.authorize_typos { Setting::Set(flag) => { self.index.put_authorize_typos(self.wtxn, flag)?; Ok(()) } Setting::Reset => { self.index.put_authorize_typos(self.wtxn, true)?; Ok(()) } Setting::NotSet => Ok(()), } } fn update_min_typo_word_len(&mut self) -> Result<()> { let one = self.min_word_len_one_typo.or_reset(DEFAULT_MIN_WORD_LEN_ONE_TYPO); let two = self.min_word_len_two_typos.or_reset(DEFAULT_MIN_WORD_LEN_TWO_TYPOS); match (one, two) { (Setting::Set(one), Setting::Set(two)) => { if one > two { return Err(UserError::InvalidMinTypoWordLenSetting(one, two).into()); } else { self.index.put_min_word_len_one_typo(self.wtxn, one)?; self.index.put_min_word_len_two_typos(self.wtxn, two)?; } } (Setting::Set(one), _) => { let two = self.index.min_word_len_two_typos(self.wtxn)?; if one > two { return Err(UserError::InvalidMinTypoWordLenSetting(one, two).into()); } else { self.index.put_min_word_len_one_typo(self.wtxn, one)?; } } (_, Setting::Set(two)) => { let one = self.index.min_word_len_one_typo(self.wtxn)?; if one > two { return Err(UserError::InvalidMinTypoWordLenSetting(one, two).into()); } else { self.index.put_min_word_len_two_typos(self.wtxn, two)?; } } _ => (), } Ok(()) } fn update_exact_words(&mut self) -> Result<()> { match self.exact_words { Setting::Set(ref mut words) => { fn normalize(tokenizer: &Tokenizer, text: &str) -> String { tokenizer.tokenize(text).map(|token| token.lemma().to_string()).collect() } let mut builder = TokenizerBuilder::new(); let stop_words = self.index.stop_words(self.wtxn)?; if let Some(ref stop_words) = stop_words { builder.stop_words(stop_words); } let tokenizer = builder.build(); let mut words: Vec<_> = words.iter().map(|word| normalize(&tokenizer, word)).collect(); // normalization could reorder words words.sort_unstable(); let words = fst::Set::from_iter(words.iter())?; self.index.put_exact_words(self.wtxn, &words)?; } Setting::Reset => { self.index.put_exact_words(self.wtxn, &fst::Set::default())?; } Setting::NotSet => (), } Ok(()) } fn update_max_values_per_facet(&mut self) -> Result<()> { match self.max_values_per_facet { Setting::Set(max) => { self.index.put_max_values_per_facet(self.wtxn, max as u64)?; } Setting::Reset => { self.index.delete_max_values_per_facet(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_sort_facet_values_by(&mut self) -> Result<()> { match self.sort_facet_values_by.as_ref() { Setting::Set(value) => { self.index.put_sort_facet_values_by(self.wtxn, value)?; } Setting::Reset => { self.index.delete_sort_facet_values_by(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_pagination_max_total_hits(&mut self) -> Result<()> { match self.pagination_max_total_hits { Setting::Set(max) => { self.index.put_pagination_max_total_hits(self.wtxn, max as u64)?; } Setting::Reset => { self.index.delete_pagination_max_total_hits(self.wtxn)?; } Setting::NotSet => (), } Ok(()) } fn update_proximity_precision(&mut self) -> Result { let changed = match self.proximity_precision { Setting::Set(new) => { let old = self.index.proximity_precision(self.wtxn)?; if old == Some(new) { false } else { self.index.put_proximity_precision(self.wtxn, new)?; true } } Setting::Reset => self.index.delete_proximity_precision(self.wtxn)?, Setting::NotSet => false, }; Ok(changed) } fn update_embedding_configs(&mut self) -> Result { let update = match std::mem::take(&mut self.embedder_settings) { Setting::Set(configs) => { let mut changed = false; let old_configs = self.index.embedding_configs(self.wtxn)?; let old_configs: BTreeMap> = old_configs.into_iter().map(|(k, v)| (k, Setting::Set(v.into()))).collect(); let mut new_configs = BTreeMap::new(); for joined in old_configs .into_iter() .merge_join_by(configs.into_iter(), |(left, _), (right, _)| left.cmp(right)) { match joined { // updated config EitherOrBoth::Both((name, mut old), (_, new)) => { changed |= EmbeddingSettings::apply_and_need_reindex(&mut old, new); if changed { tracing::debug!(embedder = name, "need reindex"); } else { tracing::debug!(embedder = name, "skip reindex"); } let new = validate_embedding_settings(old, &name)?; new_configs.insert(name, new); } // unchanged config EitherOrBoth::Left((name, setting)) => { new_configs.insert(name, setting); } // new config EitherOrBoth::Right((name, mut setting)) => { // apply the default source in case the source was not set so that it gets validated crate::vector::settings::EmbeddingSettings::apply_default_source( &mut setting, ); crate::vector::settings::EmbeddingSettings::apply_default_openai_model( &mut setting, ); let setting = validate_embedding_settings(setting, &name)?; changed = true; new_configs.insert(name, setting); } } } let new_configs: Vec<(String, EmbeddingConfig)> = new_configs .into_iter() .filter_map(|(name, setting)| match setting { Setting::Set(value) => Some((name, value.into())), Setting::Reset => None, Setting::NotSet => Some((name, EmbeddingSettings::default().into())), }) .collect(); self.index.embedder_category_id.clear(self.wtxn)?; for (index, (embedder_name, _)) in new_configs.iter().enumerate() { self.index.embedder_category_id.put_with_flags( self.wtxn, heed::PutFlags::APPEND, embedder_name, &index .try_into() .map_err(|_| UserError::TooManyEmbedders(new_configs.len()))?, )?; } if new_configs.is_empty() { self.index.delete_embedding_configs(self.wtxn)?; } else { self.index.put_embedding_configs(self.wtxn, new_configs)?; } changed } Setting::Reset => { self.index.delete_embedding_configs(self.wtxn)?; true } Setting::NotSet => false, }; // if any changes force a reindexing // clear the vector database. if update { self.index.vector_arroy.clear(self.wtxn)?; } Ok(update) } fn update_search_cutoff(&mut self) -> Result { let changed = match self.search_cutoff { Setting::Set(new) => { let old = self.index.search_cutoff(self.wtxn)?; if old == Some(new) { false } else { self.index.put_search_cutoff(self.wtxn, new)?; true } } Setting::Reset => self.index.delete_search_cutoff(self.wtxn)?, Setting::NotSet => false, }; Ok(changed) } pub fn execute(mut self, progress_callback: FP, should_abort: FA) -> Result<()> where FP: Fn(UpdateIndexingStep) + Sync, FA: Fn() -> bool + Sync, { self.index.set_updated_at(self.wtxn, &OffsetDateTime::now_utc())?; let old_inner_settings = InnerIndexSettings::from_index(self.index, self.wtxn)?; // never trigger re-indexing self.update_displayed()?; self.update_distinct_field()?; self.update_criteria()?; self.update_primary_key()?; self.update_authorize_typos()?; self.update_min_typo_word_len()?; self.update_exact_words()?; self.update_max_values_per_facet()?; self.update_sort_facet_values_by()?; self.update_pagination_max_total_hits()?; self.update_search_cutoff()?; // could trigger re-indexing self.update_filterable()?; self.update_sortable()?; self.update_stop_words()?; self.update_non_separator_tokens()?; self.update_separator_tokens()?; self.update_dictionary()?; self.update_synonyms()?; self.update_searchable()?; self.update_exact_attributes()?; self.update_proximity_precision()?; // TODO: very rough approximation of the needs for reindexing where any change will result in // a full reindexing. // What can be done instead: // 1. Only change the distance on a distance change // 2. Only change the name -> embedder mapping on a name change // 3. Keep the old vectors but reattempt indexing on a prompt change: only actually changed prompt will need embedding + storage let embedding_configs_updated = self.update_embedding_configs()?; let new_inner_settings = InnerIndexSettings::from_index(self.index, self.wtxn)?; let inner_settings_diff = InnerIndexSettingsDiff { old: old_inner_settings, new: new_inner_settings, embedding_configs_updated, settings_update_only: true, }; if inner_settings_diff.any_reindexing_needed() { self.reindex(&progress_callback, &should_abort, inner_settings_diff)?; } Ok(()) } } pub struct InnerIndexSettingsDiff { pub(crate) old: InnerIndexSettings, pub(crate) new: InnerIndexSettings, // TODO: compare directly the embedders. pub(crate) embedding_configs_updated: bool, pub(crate) settings_update_only: bool, } impl InnerIndexSettingsDiff { pub fn any_reindexing_needed(&self) -> bool { self.reindex_searchable() || self.reindex_facets() || self.reindex_vectors() } pub fn reindex_searchable(&self) -> bool { self.old .fields_ids_map .iter() .zip(self.new.fields_ids_map.iter()) .any(|(old, new)| old != new) || self.old.stop_words.as_ref().map(|set| set.as_fst().as_bytes()) != self.new.stop_words.as_ref().map(|set| set.as_fst().as_bytes()) || self.old.allowed_separators != self.new.allowed_separators || self.old.dictionary != self.new.dictionary || self.old.user_defined_searchable_fields != self.new.user_defined_searchable_fields || self.old.exact_attributes != self.new.exact_attributes || self.old.proximity_precision != self.new.proximity_precision } pub fn reindex_facets(&self) -> bool { let existing_fields = &self.new.existing_fields; if existing_fields.iter().any(|field| field.contains('.')) { return true; } let old_faceted_fields = &self.old.user_defined_faceted_fields; if old_faceted_fields.iter().any(|field| field.contains('.')) { return true; } // If there is new faceted fields we indicate that we must reindex as we must // index new fields as facets. It means that the distinct attribute, // an Asc/Desc criterion or a filtered attribute as be added or removed. let new_faceted_fields = &self.new.user_defined_faceted_fields; if new_faceted_fields.iter().any(|field| field.contains('.')) { return true; } let faceted_updated = (existing_fields - old_faceted_fields) != (existing_fields - new_faceted_fields); self.old .fields_ids_map .iter() .zip(self.new.fields_ids_map.iter()) .any(|(old, new)| old != new) || faceted_updated } pub fn reindex_vectors(&self) -> bool { self.embedding_configs_updated } pub fn settings_update_only(&self) -> bool { self.settings_update_only } pub fn run_geo_indexing(&self) -> bool { self.old.geo_fields_ids != self.new.geo_fields_ids || (!self.settings_update_only && self.new.geo_fields_ids.is_some()) } } #[derive(Clone)] pub(crate) struct InnerIndexSettings { pub stop_words: Option>>, pub allowed_separators: Option>, pub dictionary: Option>, pub fields_ids_map: FieldsIdsMap, pub user_defined_faceted_fields: HashSet, pub user_defined_searchable_fields: Option>, pub faceted_fields_ids: HashSet, pub searchable_fields_ids: Option>, pub exact_attributes: HashSet, pub proximity_precision: ProximityPrecision, pub embedding_configs: EmbeddingConfigs, pub existing_fields: HashSet, pub geo_fields_ids: Option<(FieldId, FieldId)>, } impl InnerIndexSettings { pub fn from_index(index: &Index, rtxn: &heed::RoTxn) -> Result { let stop_words = index.stop_words(rtxn)?; let stop_words = stop_words.map(|sw| sw.map_data(Vec::from).unwrap()); let allowed_separators = index.allowed_separators(rtxn)?; let dictionary = index.dictionary(rtxn)?; let fields_ids_map = index.fields_ids_map(rtxn)?; let user_defined_searchable_fields = index.user_defined_searchable_fields(rtxn)?; let user_defined_searchable_fields = user_defined_searchable_fields.map(|sf| sf.into_iter().map(String::from).collect()); let user_defined_faceted_fields = index.user_defined_faceted_fields(rtxn)?; let searchable_fields_ids = index.searchable_fields_ids(rtxn)?; let faceted_fields_ids = index.faceted_fields_ids(rtxn)?; let exact_attributes = index.exact_attributes_ids(rtxn)?; let proximity_precision = index.proximity_precision(rtxn)?.unwrap_or_default(); let embedding_configs = embedders(index.embedding_configs(rtxn)?)?; let existing_fields: HashSet<_> = index .field_distribution(rtxn)? .into_iter() .filter_map(|(field, count)| (count != 0).then_some(field)) .collect(); // index.fields_ids_map($a)? ==>> fields_ids_map let geo_fields_ids = match fields_ids_map.id("_geo") { Some(gfid) => { let is_sortable = index.sortable_fields_ids(rtxn)?.contains(&gfid); let is_filterable = index.filterable_fields_ids(rtxn)?.contains(&gfid); // if `_geo` is faceted then we get the `lat` and `lng` if is_sortable || is_filterable { let field_ids = fields_ids_map .insert("_geo.lat") .zip(fields_ids_map.insert("_geo.lng")) .ok_or(UserError::AttributeLimitReached)?; Some(field_ids) } else { None } } None => None, }; Ok(Self { stop_words, allowed_separators, dictionary, fields_ids_map, user_defined_faceted_fields, user_defined_searchable_fields, faceted_fields_ids, searchable_fields_ids, exact_attributes, proximity_precision, embedding_configs, existing_fields, geo_fields_ids, }) } // find and insert the new field ids pub fn recompute_facets(&mut self, wtxn: &mut heed::RwTxn, index: &Index) -> Result<()> { let new_facets = self .fields_ids_map .names() .filter(|&field| crate::is_faceted(field, &self.user_defined_faceted_fields)) .map(|field| field.to_string()) .collect(); index.put_faceted_fields(wtxn, &new_facets)?; self.faceted_fields_ids = index.faceted_fields_ids(wtxn)?; Ok(()) } // find and insert the new field ids pub fn recompute_searchables(&mut self, wtxn: &mut heed::RwTxn, index: &Index) -> Result<()> { // in case new fields were introduced we're going to recreate the searchable fields. if let Some(searchable_fields) = self.user_defined_searchable_fields.as_ref() { let searchable_fields = searchable_fields.iter().map(String::as_ref).collect::>(); index.put_all_searchable_fields_from_fields_ids_map( wtxn, &searchable_fields, &self.fields_ids_map, )?; let searchable_fields_ids = index.searchable_fields_ids(wtxn)?; self.searchable_fields_ids = searchable_fields_ids; } Ok(()) } } fn embedders(embedding_configs: Vec<(String, EmbeddingConfig)>) -> Result { let res: Result<_> = embedding_configs .into_iter() .map(|(name, EmbeddingConfig { embedder_options, prompt })| { let prompt = Arc::new(prompt.try_into().map_err(crate::Error::from)?); let embedder = Arc::new( Embedder::new(embedder_options.clone()) .map_err(crate::vector::Error::from) .map_err(crate::Error::from)?, ); Ok((name, (embedder, prompt))) }) .collect(); res.map(EmbeddingConfigs::new) } fn validate_prompt( name: &str, new: Setting, ) -> Result> { match new { Setting::Set(EmbeddingSettings { source, model, revision, api_key, dimensions, document_template: Setting::Set(template), url, query, input_field, path_to_embeddings, embedding_object, input_type, distribution, }) => { // validate let template = crate::prompt::Prompt::new(template) .map(|prompt| crate::prompt::PromptData::from(prompt).template) .map_err(|inner| UserError::InvalidPromptForEmbeddings(name.to_owned(), inner))?; Ok(Setting::Set(EmbeddingSettings { source, model, revision, api_key, dimensions, document_template: Setting::Set(template), url, query, input_field, path_to_embeddings, embedding_object, input_type, distribution, })) } new => Ok(new), } } pub fn validate_embedding_settings( settings: Setting, name: &str, ) -> Result> { let settings = validate_prompt(name, settings)?; let Setting::Set(settings) = settings else { return Ok(settings) }; let EmbeddingSettings { source, model, revision, api_key, dimensions, document_template, url, query, input_field, path_to_embeddings, embedding_object, input_type, distribution, } = settings; if let Some(0) = dimensions.set() { return Err(crate::error::UserError::InvalidSettingsDimensions { embedder_name: name.to_owned(), } .into()); } if let Some(url) = url.as_ref().set() { url::Url::parse(url).map_err(|error| crate::error::UserError::InvalidUrl { embedder_name: name.to_owned(), inner_error: error, url: url.to_owned(), })?; } let Some(inferred_source) = source.set() else { return Ok(Setting::Set(EmbeddingSettings { source, model, revision, api_key, dimensions, document_template, url, query, input_field, path_to_embeddings, embedding_object, input_type, distribution, })); }; match inferred_source { EmbedderSource::OpenAi => { check_unset(&revision, EmbeddingSettings::REVISION, inferred_source, name)?; check_unset(&url, EmbeddingSettings::URL, inferred_source, name)?; check_unset(&query, EmbeddingSettings::QUERY, inferred_source, name)?; check_unset(&input_field, EmbeddingSettings::INPUT_FIELD, inferred_source, name)?; check_unset( &path_to_embeddings, EmbeddingSettings::PATH_TO_EMBEDDINGS, inferred_source, name, )?; check_unset( &embedding_object, EmbeddingSettings::EMBEDDING_OBJECT, inferred_source, name, )?; check_unset(&input_type, EmbeddingSettings::INPUT_TYPE, inferred_source, name)?; if let Setting::Set(model) = &model { let model = crate::vector::openai::EmbeddingModel::from_name(model.as_str()) .ok_or(crate::error::UserError::InvalidOpenAiModel { embedder_name: name.to_owned(), model: model.clone(), })?; if let Setting::Set(dimensions) = dimensions { if !model.supports_overriding_dimensions() && dimensions != model.default_dimensions() { return Err(crate::error::UserError::InvalidOpenAiModelDimensions { embedder_name: name.to_owned(), model: model.name(), dimensions, expected_dimensions: model.default_dimensions(), } .into()); } if dimensions > model.default_dimensions() { return Err(crate::error::UserError::InvalidOpenAiModelDimensionsMax { embedder_name: name.to_owned(), model: model.name(), dimensions, max_dimensions: model.default_dimensions(), } .into()); } } } } EmbedderSource::Ollama => { // Dimensions get inferred, only model name is required check_unset(&dimensions, EmbeddingSettings::DIMENSIONS, inferred_source, name)?; check_set(&model, EmbeddingSettings::MODEL, inferred_source, name)?; check_unset(&revision, EmbeddingSettings::REVISION, inferred_source, name)?; check_unset(&query, EmbeddingSettings::QUERY, inferred_source, name)?; check_unset(&input_field, EmbeddingSettings::INPUT_FIELD, inferred_source, name)?; check_unset( &path_to_embeddings, EmbeddingSettings::PATH_TO_EMBEDDINGS, inferred_source, name, )?; check_unset( &embedding_object, EmbeddingSettings::EMBEDDING_OBJECT, inferred_source, name, )?; check_unset(&input_type, EmbeddingSettings::INPUT_TYPE, inferred_source, name)?; } EmbedderSource::HuggingFace => { check_unset(&api_key, EmbeddingSettings::API_KEY, inferred_source, name)?; check_unset(&dimensions, EmbeddingSettings::DIMENSIONS, inferred_source, name)?; check_unset(&url, EmbeddingSettings::URL, inferred_source, name)?; check_unset(&query, EmbeddingSettings::QUERY, inferred_source, name)?; check_unset(&input_field, EmbeddingSettings::INPUT_FIELD, inferred_source, name)?; check_unset( &path_to_embeddings, EmbeddingSettings::PATH_TO_EMBEDDINGS, inferred_source, name, )?; check_unset( &embedding_object, EmbeddingSettings::EMBEDDING_OBJECT, inferred_source, name, )?; check_unset(&input_type, EmbeddingSettings::INPUT_TYPE, inferred_source, name)?; } EmbedderSource::UserProvided => { check_unset(&model, EmbeddingSettings::MODEL, inferred_source, name)?; check_unset(&revision, EmbeddingSettings::REVISION, inferred_source, name)?; check_unset(&api_key, EmbeddingSettings::API_KEY, inferred_source, name)?; check_unset( &document_template, EmbeddingSettings::DOCUMENT_TEMPLATE, inferred_source, name, )?; check_set(&dimensions, EmbeddingSettings::DIMENSIONS, inferred_source, name)?; check_unset(&url, EmbeddingSettings::URL, inferred_source, name)?; check_unset(&query, EmbeddingSettings::QUERY, inferred_source, name)?; check_unset(&input_field, EmbeddingSettings::INPUT_FIELD, inferred_source, name)?; check_unset( &path_to_embeddings, EmbeddingSettings::PATH_TO_EMBEDDINGS, inferred_source, name, )?; check_unset( &embedding_object, EmbeddingSettings::EMBEDDING_OBJECT, inferred_source, name, )?; check_unset(&input_type, EmbeddingSettings::INPUT_TYPE, inferred_source, name)?; } EmbedderSource::Rest => { check_unset(&model, EmbeddingSettings::MODEL, inferred_source, name)?; check_unset(&revision, EmbeddingSettings::REVISION, inferred_source, name)?; check_set(&url, EmbeddingSettings::URL, inferred_source, name)?; } } Ok(Setting::Set(EmbeddingSettings { source, model, revision, api_key, dimensions, document_template, url, query, input_field, path_to_embeddings, embedding_object, input_type, distribution, })) } #[cfg(test)] mod tests { use big_s::S; use heed::types::Bytes; use maplit::{btreemap, btreeset, hashset}; use super::*; use crate::error::Error; use crate::index::tests::TempIndex; use crate::update::ClearDocuments; use crate::{Criterion, Filter, SearchResult}; #[test] fn set_and_reset_searchable_fields() { let index = TempIndex::new(); // First we send 3 documents with ids from 1 to 3. let mut wtxn = index.write_txn().unwrap(); index .add_documents_using_wtxn( &mut wtxn, documents!([ { "id": 1, "name": "kevin", "age": 23 }, { "id": 2, "name": "kevina", "age": 21}, { "id": 3, "name": "benoit", "age": 34 } ]), ) .unwrap(); // We change the searchable fields to be the "name" field only. index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_searchable_fields(vec!["name".into()]); }) .unwrap(); wtxn.commit().unwrap(); // Check that the searchable field is correctly set to "name" only. let rtxn = index.read_txn().unwrap(); // When we search for something that is not in // the searchable fields it must not return any document. let result = index.search(&rtxn).query("23").execute().unwrap(); assert!(result.documents_ids.is_empty()); // When we search for something that is in the searchable fields // we must find the appropriate document. let result = index.search(&rtxn).query(r#""kevin""#).execute().unwrap(); let documents = index.documents(&rtxn, result.documents_ids).unwrap(); assert_eq!(documents.len(), 1); assert_eq!(documents[0].1.get(0), Some(&br#""kevin""#[..])); drop(rtxn); // We change the searchable fields to be the "name" field only. index .update_settings(|settings| { settings.reset_searchable_fields(); }) .unwrap(); // Check that the searchable field have been reset and documents are found now. let rtxn = index.read_txn().unwrap(); let searchable_fields = index.searchable_fields(&rtxn).unwrap(); assert_eq!(searchable_fields, None); let result = index.search(&rtxn).query("23").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); let documents = index.documents(&rtxn, result.documents_ids).unwrap(); assert_eq!(documents[0].1.get(0), Some(&br#""kevin""#[..])); } #[test] fn mixup_searchable_with_displayed_fields() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); // First we send 3 documents with ids from 1 to 3. index .add_documents_using_wtxn( &mut wtxn, documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ]), ) .unwrap(); // In the same transaction we change the displayed fields to be only the "age". // We also change the searchable fields to be the "name" field only. index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_displayed_fields(vec!["age".into()]); settings.set_searchable_fields(vec!["name".into()]); }) .unwrap(); wtxn.commit().unwrap(); // Check that the displayed fields are correctly set to `None` (default value). let rtxn = index.read_txn().unwrap(); let fields_ids = index.displayed_fields(&rtxn).unwrap(); assert_eq!(fields_ids.unwrap(), (&["age"][..])); drop(rtxn); // We change the searchable fields to be the "name" field only. index .update_settings(|settings| { settings.reset_searchable_fields(); }) .unwrap(); // Check that the displayed fields always contains only the "age" field. let rtxn = index.read_txn().unwrap(); let fields_ids = index.displayed_fields(&rtxn).unwrap(); assert_eq!(fields_ids.unwrap(), &["age"][..]); } #[test] fn default_displayed_fields() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // First we send 3 documents with ids from 1 to 3. index .add_documents(documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ])) .unwrap(); // Check that the displayed fields are correctly set to `None` (default value). let rtxn = index.read_txn().unwrap(); let fields_ids = index.displayed_fields(&rtxn).unwrap(); assert_eq!(fields_ids, None); } #[test] fn set_and_reset_displayed_field() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); index .add_documents_using_wtxn( &mut wtxn, documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ]), ) .unwrap(); index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_displayed_fields(vec!["age".into()]); }) .unwrap(); wtxn.commit().unwrap(); // Check that the displayed fields are correctly set to only the "age" field. let rtxn = index.read_txn().unwrap(); let fields_ids = index.displayed_fields(&rtxn).unwrap(); assert_eq!(fields_ids.unwrap(), &["age"][..]); drop(rtxn); // We reset the fields ids to become `None`, the default value. index .update_settings(|settings| { settings.reset_displayed_fields(); }) .unwrap(); // Check that the displayed fields are correctly set to `None` (default value). let rtxn = index.read_txn().unwrap(); let fields_ids = index.displayed_fields(&rtxn).unwrap(); assert_eq!(fields_ids, None); } #[test] fn set_filterable_fields() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // Set the filterable fields to be the age. index .update_settings(|settings| { settings.set_filterable_fields(hashset! { S("age") }); }) .unwrap(); // Then index some documents. index .add_documents(documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ])) .unwrap(); // Check that the displayed fields are correctly set. let rtxn = index.read_txn().unwrap(); let fields_ids = index.filterable_fields(&rtxn).unwrap(); assert_eq!(fields_ids, hashset! { S("age") }); // Only count the field_id 0 and level 0 facet values. // TODO we must support typed CSVs for numbers to be understood. let fidmap = index.fields_ids_map(&rtxn).unwrap(); for document in index.all_documents(&rtxn).unwrap() { let document = document.unwrap(); let json = crate::obkv_to_json(&fidmap.ids().collect::>(), &fidmap, document.1) .unwrap(); println!("json: {:?}", json); } let count = index .facet_id_f64_docids .remap_key_type::() // The faceted field id is 1u16 .prefix_iter(&rtxn, &[0, 1, 0]) .unwrap() .count(); assert_eq!(count, 3); drop(rtxn); // Index a little more documents with new and current facets values. index .add_documents(documents!([ { "name": "kevin2", "age": 23}, { "name": "kevina2", "age": 21 }, { "name": "benoit", "age": 35 } ])) .unwrap(); let rtxn = index.read_txn().unwrap(); // Only count the field_id 0 and level 0 facet values. let count = index .facet_id_f64_docids .remap_key_type::() .prefix_iter(&rtxn, &[0, 1, 0]) .unwrap() .count(); assert_eq!(count, 4); // Set the filterable fields to be the age and the name. index .update_settings(|settings| { settings.set_filterable_fields(hashset! { S("age"), S("name") }); }) .unwrap(); // Check that the displayed fields are correctly set. let rtxn = index.read_txn().unwrap(); let fields_ids = index.filterable_fields(&rtxn).unwrap(); assert_eq!(fields_ids, hashset! { S("age"), S("name") }); let rtxn = index.read_txn().unwrap(); // Only count the field_id 0 and level 0 facet values. let count = index .facet_id_f64_docids .remap_key_type::() .prefix_iter(&rtxn, &[0, 1, 0]) .unwrap() .count(); assert_eq!(count, 4); let rtxn = index.read_txn().unwrap(); // Only count the field_id 0 and level 0 facet values. let count = index .facet_id_string_docids .remap_key_type::() .prefix_iter(&rtxn, &[0, 0]) .unwrap() .count(); assert_eq!(count, 5); // Remove the age from the filterable fields. index .update_settings(|settings| { settings.set_filterable_fields(hashset! { S("name") }); }) .unwrap(); // Check that the displayed fields are correctly set. let rtxn = index.read_txn().unwrap(); let fields_ids = index.filterable_fields(&rtxn).unwrap(); assert_eq!(fields_ids, hashset! { S("name") }); let rtxn = index.read_txn().unwrap(); // Only count the field_id 0 and level 0 facet values. let count = index .facet_id_f64_docids .remap_key_type::() .prefix_iter(&rtxn, &[0, 1, 0]) .unwrap() .count(); assert_eq!(count, 0); let rtxn = index.read_txn().unwrap(); // Only count the field_id 0 and level 0 facet values. let count = index .facet_id_string_docids .remap_key_type::() .prefix_iter(&rtxn, &[0, 0]) .unwrap() .count(); assert_eq!(count, 5); } #[test] fn set_asc_desc_field() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // Set the filterable fields to be the age. index .update_settings(|settings| { settings.set_displayed_fields(vec![S("name")]); settings.set_criteria(vec![Criterion::Asc("age".to_owned())]); }) .unwrap(); // Then index some documents. index .add_documents(documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ])) .unwrap(); // Run an empty query just to ensure that the search results are ordered. let rtxn = index.read_txn().unwrap(); let SearchResult { documents_ids, .. } = index.search(&rtxn).execute().unwrap(); let documents = index.documents(&rtxn, documents_ids).unwrap(); // Fetch the documents "age" field in the ordre in which the documents appear. let age_field_id = index.fields_ids_map(&rtxn).unwrap().id("age").unwrap(); let iter = documents.into_iter().map(|(_, doc)| { let bytes = doc.get(age_field_id).unwrap(); let string = std::str::from_utf8(bytes).unwrap(); string.parse::().unwrap() }); assert_eq!(iter.collect::>(), vec![21, 23, 34]); } #[test] fn set_distinct_field() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // Set the filterable fields to be the age. index .update_settings(|settings| { // Don't display the generated `id` field. settings.set_displayed_fields(vec![S("name"), S("age")]); settings.set_distinct_field(S("age")); }) .unwrap(); // Then index some documents. index .add_documents(documents!([ { "name": "kevin", "age": 23 }, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 }, { "name": "bernard", "age": 34 }, { "name": "bertrand", "age": 34 }, { "name": "bernie", "age": 34 }, { "name": "ben", "age": 34 } ])) .unwrap(); // Run an empty query just to ensure that the search results are ordered. let rtxn = index.read_txn().unwrap(); let SearchResult { documents_ids, .. } = index.search(&rtxn).execute().unwrap(); // There must be at least one document with a 34 as the age. assert_eq!(documents_ids.len(), 3); } #[test] fn set_nested_distinct_field() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // Set the filterable fields to be the age. index .update_settings(|settings| { // Don't display the generated `id` field. settings.set_displayed_fields(vec![S("person")]); settings.set_distinct_field(S("person.age")); }) .unwrap(); // Then index some documents. index .add_documents(documents!([ { "person": { "name": "kevin", "age": 23 }}, { "person": { "name": "kevina", "age": 21 }}, { "person": { "name": "benoit", "age": 34 }}, { "person": { "name": "bernard", "age": 34 }}, { "person": { "name": "bertrand", "age": 34 }}, { "person": { "name": "bernie", "age": 34 }}, { "person": { "name": "ben", "age": 34 }} ])) .unwrap(); // Run an empty query just to ensure that the search results are ordered. let rtxn = index.read_txn().unwrap(); let SearchResult { documents_ids, .. } = index.search(&rtxn).execute().unwrap(); // There must be at least one document with a 34 as the age. assert_eq!(documents_ids.len(), 3); } #[test] fn default_stop_words() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // First we send 3 documents with ids from 1 to 3. index .add_documents(documents!([ { "name": "kevin", "age": 23}, { "name": "kevina", "age": 21 }, { "name": "benoit", "age": 34 } ])) .unwrap(); // Ensure there is no stop_words by default let rtxn = index.read_txn().unwrap(); let stop_words = index.stop_words(&rtxn).unwrap(); assert!(stop_words.is_none()); } #[test] fn set_and_reset_stop_words() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); // First we send 3 documents with ids from 1 to 3. index .add_documents_using_wtxn( &mut wtxn, documents!([ { "name": "kevin", "age": 23, "maxim": "I love dogs" }, { "name": "kevina", "age": 21, "maxim": "Doggos are the best" }, { "name": "benoit", "age": 34, "maxim": "The crepes are really good" }, ]), ) .unwrap(); // In the same transaction we provide some stop_words let set = btreeset! { "i".to_string(), "the".to_string(), "are".to_string() }; index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_stop_words(set.clone()); }) .unwrap(); wtxn.commit().unwrap(); // Ensure stop_words are effectively stored let rtxn = index.read_txn().unwrap(); let stop_words = index.stop_words(&rtxn).unwrap(); assert!(stop_words.is_some()); // at this point the index should return something let stop_words = stop_words.unwrap(); let expected = fst::Set::from_iter(&set).unwrap(); assert_eq!(stop_words.as_fst().as_bytes(), expected.as_fst().as_bytes()); // when we search for something that is a non prefix stop_words it should be ignored // thus we should get a placeholder search (all the results = 3) let result = index.search(&rtxn).query("the ").execute().unwrap(); assert_eq!(result.documents_ids.len(), 3); let result = index.search(&rtxn).query("i ").execute().unwrap(); assert_eq!(result.documents_ids.len(), 3); let result = index.search(&rtxn).query("are ").execute().unwrap(); assert_eq!(result.documents_ids.len(), 3); let result = index.search(&rtxn).query("dog").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); // we have two maxims talking about doggos let result = index.search(&rtxn).query("benoît").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); // there is one benoit in our data // now we'll reset the stop_words and ensure it's None index .update_settings(|settings| { settings.reset_stop_words(); }) .unwrap(); let rtxn = index.read_txn().unwrap(); let stop_words = index.stop_words(&rtxn).unwrap(); assert!(stop_words.is_none()); // now we can search for the stop words let result = index.search(&rtxn).query("the").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); let result = index.search(&rtxn).query("i").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); let result = index.search(&rtxn).query("are").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); // the rest of the search is still not impacted let result = index.search(&rtxn).query("dog").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); // we have two maxims talking about doggos let result = index.search(&rtxn).query("benoît").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); // there is one benoit in our data } #[test] fn set_and_reset_synonyms() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); // Send 3 documents with ids from 1 to 3. index .add_documents_using_wtxn( &mut wtxn, documents!([ { "name": "kevin", "age": 23, "maxim": "I love dogs"}, { "name": "kevina", "age": 21, "maxim": "Doggos are the best"}, { "name": "benoit", "age": 34, "maxim": "The crepes are really good"}, ]), ) .unwrap(); // In the same transaction provide some synonyms index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_synonyms(btreemap! { "blini".to_string() => vec!["crepes".to_string()], "super like".to_string() => vec!["love".to_string()], "puppies".to_string() => vec!["dogs".to_string(), "doggos".to_string()] }); }) .unwrap(); wtxn.commit().unwrap(); // Ensure synonyms are effectively stored let rtxn = index.read_txn().unwrap(); let synonyms = index.synonyms(&rtxn).unwrap(); assert!(!synonyms.is_empty()); // at this point the index should return something // Check that we can use synonyms let result = index.search(&rtxn).query("blini").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); let result = index.search(&rtxn).query("super like").execute().unwrap(); assert_eq!(result.documents_ids.len(), 1); let result = index.search(&rtxn).query("puppies").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); // Reset the synonyms index .update_settings(|settings| { settings.reset_synonyms(); }) .unwrap(); // Ensure synonyms are reset let rtxn = index.read_txn().unwrap(); let synonyms = index.synonyms(&rtxn).unwrap(); assert!(synonyms.is_empty()); // Check that synonyms are no longer work let result = index.search(&rtxn).query("blini").execute().unwrap(); assert!(result.documents_ids.is_empty()); let result = index.search(&rtxn).query("super like").execute().unwrap(); assert!(result.documents_ids.is_empty()); let result = index.search(&rtxn).query("puppies").execute().unwrap(); assert!(result.documents_ids.is_empty()); } #[test] fn thai_synonyms() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); // Send 3 documents with ids from 1 to 3. index .add_documents_using_wtxn( &mut wtxn, documents!([ { "name": "ยี่ปุ่น" }, { "name": "ญี่ปุ่น" }, ]), ) .unwrap(); // In the same transaction provide some synonyms index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_synonyms(btreemap! { "japanese".to_string() => vec![S("ญี่ปุ่น"), S("ยี่ปุ่น")], }); }) .unwrap(); wtxn.commit().unwrap(); // Ensure synonyms are effectively stored let rtxn = index.read_txn().unwrap(); let synonyms = index.synonyms(&rtxn).unwrap(); assert!(!synonyms.is_empty()); // at this point the index should return something // Check that we can use synonyms let result = index.search(&rtxn).query("japanese").execute().unwrap(); assert_eq!(result.documents_ids.len(), 2); } #[test] fn setting_searchable_recomputes_other_settings() { let index = TempIndex::new(); // Set all the settings except searchable index .update_settings(|settings| { settings.set_displayed_fields(vec!["hello".to_string()]); settings.set_filterable_fields(hashset! { S("age"), S("toto") }); settings.set_criteria(vec![Criterion::Asc(S("toto"))]); }) .unwrap(); // check the output let rtxn = index.read_txn().unwrap(); assert_eq!(&["hello"][..], index.displayed_fields(&rtxn).unwrap().unwrap()); // since no documents have been pushed the primary key is still unset assert!(index.primary_key(&rtxn).unwrap().is_none()); assert_eq!(vec![Criterion::Asc("toto".to_string())], index.criteria(&rtxn).unwrap()); drop(rtxn); // We set toto and age as searchable to force reordering of the fields index .update_settings(|settings| { settings.set_searchable_fields(vec!["toto".to_string(), "age".to_string()]); }) .unwrap(); let rtxn = index.read_txn().unwrap(); assert_eq!(&["hello"][..], index.displayed_fields(&rtxn).unwrap().unwrap()); assert!(index.primary_key(&rtxn).unwrap().is_none()); assert_eq!(vec![Criterion::Asc("toto".to_string())], index.criteria(&rtxn).unwrap()); } #[test] fn setting_not_filterable_cant_filter() { let index = TempIndex::new(); // Set all the settings except searchable index .update_settings(|settings| { settings.set_displayed_fields(vec!["hello".to_string()]); // It is only Asc(toto), there is a facet database but it is denied to filter with toto. settings.set_criteria(vec![Criterion::Asc(S("toto"))]); }) .unwrap(); let rtxn = index.read_txn().unwrap(); let filter = Filter::from_str("toto = 32").unwrap().unwrap(); let _ = filter.evaluate(&rtxn, &index).unwrap_err(); } #[test] fn setting_primary_key() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; let mut wtxn = index.write_txn().unwrap(); // Set the primary key settings index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_primary_key(S("mykey")); }) .unwrap(); assert_eq!(index.primary_key(&wtxn).unwrap(), Some("mykey")); // Then index some documents with the "mykey" primary key. index .add_documents_using_wtxn( &mut wtxn, documents!([ { "mykey": 1, "name": "kevin", "age": 23 }, { "mykey": 2, "name": "kevina", "age": 21 }, { "mykey": 3, "name": "benoit", "age": 34 }, { "mykey": 4, "name": "bernard", "age": 34 }, { "mykey": 5, "name": "bertrand", "age": 34 }, { "mykey": 6, "name": "bernie", "age": 34 }, { "mykey": 7, "name": "ben", "age": 34 } ]), ) .unwrap(); wtxn.commit().unwrap(); // Updating settings with the same primary key should do nothing let mut wtxn = index.write_txn().unwrap(); index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_primary_key(S("mykey")); }) .unwrap(); assert_eq!(index.primary_key(&wtxn).unwrap(), Some("mykey")); wtxn.commit().unwrap(); // Updating the settings with a different (or no) primary key causes an error let mut wtxn = index.write_txn().unwrap(); let error = index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.reset_primary_key(); }) .unwrap_err(); assert!(matches!(error, Error::UserError(UserError::PrimaryKeyCannotBeChanged(_)))); wtxn.abort(); // But if we clear the database... let mut wtxn = index.write_txn().unwrap(); let builder = ClearDocuments::new(&mut wtxn, &index); builder.execute().unwrap(); wtxn.commit().unwrap(); // ...we can change the primary key index .update_settings(|settings| { settings.set_primary_key(S("myid")); }) .unwrap(); } #[test] fn setting_impact_relevancy() { let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; // Set the genres setting index .update_settings(|settings| { settings.set_filterable_fields(hashset! { S("genres") }); }) .unwrap(); index.add_documents(documents!([ { "id": 11, "title": "Star Wars", "overview": "Princess Leia is captured and held hostage by the evil Imperial forces in their effort to take over the galactic Empire. Venturesome Luke Skywalker and dashing captain Han Solo team together with the loveable robot duo R2-D2 and C-3PO to rescue the beautiful princess and restore peace and justice in the Empire.", "genres": ["Adventure", "Action", "Science Fiction"], "poster": "https://image.tmdb.org/t/p/w500/6FfCtAuVAW8XJjZ7eWeLibRLWTw.jpg", "release_date": 233366400 }, { "id": 30, "title": "Magnetic Rose", "overview": "", "genres": ["Animation", "Science Fiction"], "poster": "https://image.tmdb.org/t/p/w500/gSuHDeWemA1menrwfMRChnSmMVN.jpg", "release_date": 819676800 } ])).unwrap(); let rtxn = index.read_txn().unwrap(); let SearchResult { documents_ids, .. } = index.search(&rtxn).query("S").execute().unwrap(); let first_id = documents_ids[0]; let documents = index.documents(&rtxn, documents_ids).unwrap(); let (_, content) = documents.iter().find(|(id, _)| *id == first_id).unwrap(); let fid = index.fields_ids_map(&rtxn).unwrap().id("title").unwrap(); let line = std::str::from_utf8(content.get(fid).unwrap()).unwrap(); assert_eq!(line, r#""Star Wars""#); } #[test] fn test_disable_typo() { let index = TempIndex::new(); let mut txn = index.write_txn().unwrap(); assert!(index.authorize_typos(&txn).unwrap()); index .update_settings_using_wtxn(&mut txn, |settings| { settings.set_autorize_typos(false); }) .unwrap(); assert!(!index.authorize_typos(&txn).unwrap()); } #[test] fn update_min_word_len_for_typo() { let index = TempIndex::new(); // Set the genres setting index .update_settings(|settings| { settings.set_min_word_len_one_typo(8); settings.set_min_word_len_two_typos(8); }) .unwrap(); let txn = index.read_txn().unwrap(); assert_eq!(index.min_word_len_one_typo(&txn).unwrap(), 8); assert_eq!(index.min_word_len_two_typos(&txn).unwrap(), 8); index .update_settings(|settings| { settings.reset_min_word_len_one_typo(); settings.reset_min_word_len_two_typos(); }) .unwrap(); let txn = index.read_txn().unwrap(); assert_eq!(index.min_word_len_one_typo(&txn).unwrap(), DEFAULT_MIN_WORD_LEN_ONE_TYPO); assert_eq!(index.min_word_len_two_typos(&txn).unwrap(), DEFAULT_MIN_WORD_LEN_TWO_TYPOS); } #[test] fn update_invalid_min_word_len_for_typo() { let index = TempIndex::new(); // Set the genres setting index .update_settings(|settings| { settings.set_min_word_len_one_typo(10); settings.set_min_word_len_two_typos(7); }) .unwrap_err(); } #[test] fn update_exact_words_normalization() { let index = TempIndex::new(); let mut txn = index.write_txn().unwrap(); // Set the genres setting index .update_settings_using_wtxn(&mut txn, |settings| { let words = btreeset! { S("Ab"), S("ac") }; settings.set_exact_words(words); }) .unwrap(); let exact_words = index.exact_words(&txn).unwrap().unwrap(); for word in exact_words.into_fst().stream().into_str_vec().unwrap() { assert!(word.0 == "ac" || word.0 == "ab"); } } #[test] fn test_correct_settings_init() { let index = TempIndex::new(); index .update_settings(|settings| { // we don't actually update the settings, just check their content let Settings { wtxn: _, index: _, indexer_config: _, searchable_fields, displayed_fields, filterable_fields, sortable_fields, criteria, stop_words, non_separator_tokens, separator_tokens, dictionary, distinct_field, synonyms, primary_key, authorize_typos, min_word_len_two_typos, min_word_len_one_typo, exact_words, exact_attributes, max_values_per_facet, sort_facet_values_by, pagination_max_total_hits, proximity_precision, embedder_settings, search_cutoff, } = settings; assert!(matches!(searchable_fields, Setting::NotSet)); assert!(matches!(displayed_fields, Setting::NotSet)); assert!(matches!(filterable_fields, Setting::NotSet)); assert!(matches!(sortable_fields, Setting::NotSet)); assert!(matches!(criteria, Setting::NotSet)); assert!(matches!(stop_words, Setting::NotSet)); assert!(matches!(non_separator_tokens, Setting::NotSet)); assert!(matches!(separator_tokens, Setting::NotSet)); assert!(matches!(dictionary, Setting::NotSet)); assert!(matches!(distinct_field, Setting::NotSet)); assert!(matches!(synonyms, Setting::NotSet)); assert!(matches!(primary_key, Setting::NotSet)); assert!(matches!(authorize_typos, Setting::NotSet)); assert!(matches!(min_word_len_two_typos, Setting::NotSet)); assert!(matches!(min_word_len_one_typo, Setting::NotSet)); assert!(matches!(exact_words, Setting::NotSet)); assert!(matches!(exact_attributes, Setting::NotSet)); assert!(matches!(max_values_per_facet, Setting::NotSet)); assert!(matches!(sort_facet_values_by, Setting::NotSet)); assert!(matches!(pagination_max_total_hits, Setting::NotSet)); assert!(matches!(proximity_precision, Setting::NotSet)); assert!(matches!(embedder_settings, Setting::NotSet)); assert!(matches!(search_cutoff, Setting::NotSet)); }) .unwrap(); } #[test] fn settings_must_ignore_soft_deleted() { use serde_json::json; let index = TempIndex::new(); let mut docs = vec![]; for i in 0..10 { docs.push(json!({ "id": i, "title": format!("{:x}", i) })); } index.add_documents(documents! { docs }).unwrap(); index.delete_documents((0..5).map(|id| id.to_string()).collect()); let mut wtxn = index.write_txn().unwrap(); index .update_settings_using_wtxn(&mut wtxn, |settings| { settings.set_searchable_fields(vec!["id".to_string()]); }) .unwrap(); wtxn.commit().unwrap(); let rtxn = index.write_txn().unwrap(); let docs: StdResult, _> = index.all_documents(&rtxn).unwrap().collect(); let docs = docs.unwrap(); assert_eq!(docs.len(), 5); } }