use std::fmt::Write as _; use std::path::PathBuf; use std::{str, io, fmt}; use anyhow::Context; use byte_unit::Byte; use heed::EnvOpenOptions; use milli::Index; use structopt::StructOpt; use Command::*; #[cfg(target_os = "linux")] #[global_allocator] static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc; const MAIN_DB_NAME: &str = "main"; const WORD_DOCIDS_DB_NAME: &str = "word-docids"; const WORD_PREFIX_DOCIDS_DB_NAME: &str = "word-prefix-docids"; const DOCID_WORD_POSITIONS_DB_NAME: &str = "docid-word-positions"; const WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-pair-proximity-docids"; const WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-prefix-pair-proximity-docids"; const WORD_LEVEL_POSITION_DOCIDS_DB_NAME: &str = "word-level-position-docids"; const FACET_FIELD_ID_VALUE_DOCIDS_DB_NAME: &str = "facet-field-id-value-docids"; const FIELD_ID_DOCID_FACET_VALUES_DB_NAME: &str = "field-id-docid-facet-values"; const DOCUMENTS_DB_NAME: &str = "documents"; const ALL_DATABASE_NAMES: &[&str] = &[ MAIN_DB_NAME, WORD_DOCIDS_DB_NAME, WORD_PREFIX_DOCIDS_DB_NAME, DOCID_WORD_POSITIONS_DB_NAME, WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME, WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME, WORD_LEVEL_POSITION_DOCIDS_DB_NAME, FACET_FIELD_ID_VALUE_DOCIDS_DB_NAME, FIELD_ID_DOCID_FACET_VALUES_DB_NAME, DOCUMENTS_DB_NAME, ]; const POSTINGS_DATABASE_NAMES: &[&str] = &[ WORD_DOCIDS_DB_NAME, WORD_PREFIX_DOCIDS_DB_NAME, DOCID_WORD_POSITIONS_DB_NAME, WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME, WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME, ]; #[derive(Debug, StructOpt)] /// A stats fetcher for milli. pub struct Opt { /// The database path where the database is located. /// It is created if it doesn't already exist. #[structopt(long = "db", parse(from_os_str))] database: PathBuf, /// The maximum size the database can take on disk. It is recommended to specify /// the whole disk space (value must be a multiple of a page size). #[structopt(long = "db-size", default_value = "100 GiB")] database_size: Byte, /// Verbose mode (-v, -vv, -vvv, etc.) #[structopt(short, long, parse(from_occurrences))] verbose: usize, #[structopt(subcommand)] command: Command, } #[derive(Debug, StructOpt)] enum Command { /// Outputs a CSV of the most frequent words of this index. /// /// `word` are displayed and ordered by frequency. /// `document_frequency` defines the number of documents which contains the word. MostCommonWords { /// The maximum number of frequencies to return. #[structopt(default_value = "10")] limit: usize, }, /// Outputs a CSV with the biggest entries of the database. BiggestValues { /// The maximum number of sizes to return. #[structopt(default_value = "10")] limit: usize, }, /// Outputs a CSV with the documents ids where the given words appears. WordsDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// The words to display the documents ids of. words: Vec, }, /// Outputs a CSV with the documents ids where the given words prefixes appears. WordsPrefixesDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// The prefixes to display the documents ids of. prefixes: Vec, }, /// Outputs a CSV with the documents ids along with the facet values where it appears. FacetValuesDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// The field name in the document. field_name: String, }, /// Outputs a CSV with the documents ids along with the word level positions where it appears. WordsLevelPositionsDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// The field name in the document. words: Vec, }, /// Outputs a CSV with the documents ids, words and the positions where this word appears. DocidsWordsPositions { /// Display the whole positions in detail. #[structopt(long)] full_display: bool, /// If defined, only retrieve the documents that corresponds to these internal ids. internal_documents_ids: Vec, }, /// Outputs some facets statistics for the given facet name. FacetStats { /// The field name in the document. field_name: String, }, /// Outputs the average number of *different* words by document. AverageNumberOfWordsByDoc, /// Outputs the average number of positions for each document words. AverageNumberOfPositionsByWord, /// Outputs some statistics about the given database (e.g. median, quartiles, /// percentiles, minimum, maximum, averge, key size, value size). DatabaseStats { #[structopt(possible_values = POSTINGS_DATABASE_NAMES)] database: String, }, /// Outputs the size in bytes of the specified databases names. SizeOfDatabase { /// The name of the database to measure the size of, if not specified it's equivalent /// to specifying all the databases names. #[structopt(possible_values = ALL_DATABASE_NAMES)] databases: Vec, }, /// Outputs a CSV with the proximities for the two specidied words and /// the documents ids where these relations appears. /// /// `word1`, `word2` defines the word pair specified *in this specific order*. /// `proximity` defines the proximity between the two specified words. /// `documents_ids` defines the documents ids where the relation appears. WordPairProximitiesDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// First word of the word pair. word1: String, /// Second word of the word pair. word2: String, }, /// Outputs the words FST to standard output. /// /// One can use the FST binary helper to dissect and analyze it, /// you can install it using `cargo install fst-bin`. ExportWordsFst, /// Outputs the words prefix FST to standard output. /// /// One can use the FST binary helper to dissect and analyze it, /// you can install it using `cargo install fst-bin`. ExportWordsPrefixFst, /// Outputs the documents as JSON lines to the standard output. /// /// All of the fields are extracted, not just the displayed ones. ExportDocuments { /// If defined, only retrieve the documents that corresponds to these internal ids. internal_documents_ids: Vec, }, } fn main() -> anyhow::Result<()> { let opt = Opt::from_args(); stderrlog::new() .verbosity(opt.verbose) .show_level(false) .timestamp(stderrlog::Timestamp::Off) .init()?; let mut options = EnvOpenOptions::new(); options.map_size(opt.database_size.get_bytes() as usize); // Return an error if the database does not exist. if !opt.database.exists() { anyhow::bail!("The database ({}) does not exist.", opt.database.display()); } // Open the LMDB database. let index = Index::new(options, opt.database)?; let rtxn = index.read_txn()?; match opt.command { MostCommonWords { limit } => most_common_words(&index, &rtxn, limit), BiggestValues { limit } => biggest_value_sizes(&index, &rtxn, limit), WordsDocids { full_display, words } => words_docids(&index, &rtxn, !full_display, words), WordsPrefixesDocids { full_display, prefixes } => { words_prefixes_docids(&index, &rtxn, !full_display, prefixes) }, FacetValuesDocids { full_display, field_name } => { facet_values_docids(&index, &rtxn, !full_display, field_name) }, WordsLevelPositionsDocids { full_display, words } => { words_level_positions_docids(&index, &rtxn, !full_display, words) }, DocidsWordsPositions { full_display, internal_documents_ids } => { docids_words_positions(&index, &rtxn, !full_display, internal_documents_ids) }, FacetStats { field_name } => facet_stats(&index, &rtxn, field_name), AverageNumberOfWordsByDoc => average_number_of_words_by_doc(&index, &rtxn), AverageNumberOfPositionsByWord => { average_number_of_positions_by_word(&index, &rtxn) }, SizeOfDatabase { databases } => size_of_databases(&index, &rtxn, databases), DatabaseStats { database } => database_stats(&index, &rtxn, &database), WordPairProximitiesDocids { full_display, word1, word2 } => { word_pair_proximities_docids(&index, &rtxn, !full_display, word1, word2) }, ExportWordsFst => export_words_fst(&index, &rtxn), ExportWordsPrefixFst => export_words_prefix_fst(&index, &rtxn), ExportDocuments { internal_documents_ids } => { export_documents(&index, &rtxn, internal_documents_ids) }, } } fn most_common_words(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> { use std::collections::BinaryHeap; use std::cmp::Reverse; let mut heap = BinaryHeap::with_capacity(limit + 1); for result in index.word_docids.iter(rtxn)? { if limit == 0 { break } let (word, docids) = result?; heap.push((Reverse(docids.len()), word)); if heap.len() > limit { heap.pop(); } } let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word", "document_frequency"])?; for (Reverse(document_frequency), word) in heap.into_sorted_vec() { wtr.write_record(&[word, &document_frequency.to_string()])?; } Ok(wtr.flush()?) } /// Helper function that converts the facet value key to a unique type /// that can be used to log or display purposes. fn facet_values_iter<'txn, DC: 'txn, T>( rtxn: &'txn heed::RoTxn, db: heed::Database, field_id: u8, facet_type: milli::facet::FacetType, string_fn: impl Fn(&str) -> T + 'txn, float_fn: impl Fn(u8, f64, f64) -> T + 'txn, ) -> heed::Result> + 'txn>> where DC: heed::BytesDecode<'txn>, { use milli::facet::FacetType; use milli::heed_codec::facet::{FacetValueStringCodec, FacetLevelValueF64Codec}; let iter = db.prefix_iter(&rtxn, &[field_id])?; match facet_type { FacetType::String => { let iter = iter.remap_key_type::() .map(move |r| r.map(|((_, key), value)| (string_fn(key), value))); Ok(Box::new(iter) as Box>) }, FacetType::Number => { let iter = iter.remap_key_type::() .map(move |r| r.map(|((_, level, left, right), value)| { (float_fn(level, left, right), value) })); Ok(Box::new(iter)) }, } } fn facet_number_value_to_string(level: u8, left: T, right: T) -> (u8, String) { if level == 0 { (level, format!("{:?}", left)) } else { (level, format!("{:?} to {:?}", left, right)) } } fn biggest_value_sizes(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> { use std::cmp::Reverse; use std::collections::BinaryHeap; use heed::types::{Str, ByteSlice}; let Index { env: _env, main, word_docids, word_prefix_docids, docid_word_positions, word_pair_proximity_docids, word_prefix_pair_proximity_docids, word_level_position_docids, facet_field_id_value_docids, field_id_docid_facet_values: _, documents, } = index; let main_name = "main"; let word_docids_name = "word_docids"; let word_prefix_docids_name = "word_prefix_docids"; let docid_word_positions_name = "docid_word_positions"; let word_prefix_pair_proximity_docids_name = "word_prefix_pair_proximity_docids"; let word_pair_proximity_docids_name = "word_pair_proximity_docids"; let facet_field_id_value_docids_name = "facet_field_id_value_docids"; let documents_name = "documents"; let mut heap = BinaryHeap::with_capacity(limit + 1); if limit > 0 { // Fetch the words FST let words_fst = index.words_fst(rtxn)?; let length = words_fst.as_fst().as_bytes().len(); heap.push(Reverse((length, format!("words-fst"), main_name))); if heap.len() > limit { heap.pop(); } // Fetch the word prefix FST let words_prefixes_fst = index.words_prefixes_fst(rtxn)?; let length = words_prefixes_fst.as_fst().as_bytes().len(); heap.push(Reverse((length, format!("words-prefixes-fst"), main_name))); if heap.len() > limit { heap.pop(); } if let Some(documents_ids) = main.get::<_, Str, ByteSlice>(rtxn, "documents-ids")? { heap.push(Reverse((documents_ids.len(), format!("documents-ids"), main_name))); if heap.len() > limit { heap.pop(); } } for result in word_docids.remap_data_type::().iter(rtxn)? { let (word, value) = result?; heap.push(Reverse((value.len(), word.to_string(), word_docids_name))); if heap.len() > limit { heap.pop(); } } for result in word_prefix_docids.remap_data_type::().iter(rtxn)? { let (word, value) = result?; heap.push(Reverse((value.len(), word.to_string(), word_prefix_docids_name))); if heap.len() > limit { heap.pop(); } } for result in docid_word_positions.remap_data_type::().iter(rtxn)? { let ((docid, word), value) = result?; let key = format!("{} {}", docid, word); heap.push(Reverse((value.len(), key, docid_word_positions_name))); if heap.len() > limit { heap.pop(); } } for result in word_pair_proximity_docids.remap_data_type::().iter(rtxn)? { let ((word1, word2, prox), value) = result?; let key = format!("{} {} {}", word1, word2, prox); heap.push(Reverse((value.len(), key, word_pair_proximity_docids_name))); if heap.len() > limit { heap.pop(); } } for result in word_prefix_pair_proximity_docids.remap_data_type::().iter(rtxn)? { let ((word, prefix, prox), value) = result?; let key = format!("{} {} {}", word, prefix, prox); heap.push(Reverse((value.len(), key, word_prefix_pair_proximity_docids_name))); if heap.len() > limit { heap.pop(); } } let faceted_fields = index.faceted_fields_ids(rtxn)?; let fields_ids_map = index.fields_ids_map(rtxn)?; for (field_id, field_type) in faceted_fields { let facet_name = fields_ids_map.name(field_id).unwrap(); let db = facet_field_id_value_docids.remap_data_type::(); let iter = facet_values_iter( rtxn, db, field_id, field_type, |key| key.to_owned(), |level, left, right| { let mut output = facet_number_value_to_string(level, left, right).1; let _ = write!(&mut output, " (level {})", level); output }, )?; for result in iter { let (fvalue, value) = result?; let key = format!("{} {}", facet_name, fvalue); heap.push(Reverse((value.len(), key, facet_field_id_value_docids_name))); if heap.len() > limit { heap.pop(); } } } for result in documents.remap_data_type::().iter(rtxn)? { let (id, value) = result?; heap.push(Reverse((value.len(), id.to_string(), documents_name))); if heap.len() > limit { heap.pop(); } } } let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["database_name", "key_name", "size"])?; for Reverse((size, key_name, database_name)) in heap.into_sorted_vec() { wtr.write_record(&[database_name.to_string(), key_name, size.to_string()])?; } Ok(wtr.flush()?) } fn words_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, words: Vec) -> anyhow::Result<()> { let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word", "documents_ids"])?; for word in words { if let Some(docids) = index.word_docids.get(rtxn, &word)? { let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[word, docids])?; } } Ok(wtr.flush()?) } fn words_prefixes_docids( index: &Index, rtxn: &heed::RoTxn, debug: bool, prefixes: Vec, ) -> anyhow::Result<()> { let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["prefix", "documents_ids"])?; if prefixes.is_empty() { for result in index.word_prefix_docids.iter(rtxn)? { let (prefix, docids) = result?; let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[prefix, &docids])?; } } else { for prefix in prefixes { if let Some(docids) = index.word_prefix_docids.get(rtxn, &prefix)? { let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[prefix, docids])?; } } } Ok(wtr.flush()?) } fn facet_values_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, field_name: String) -> anyhow::Result<()> { let fields_ids_map = index.fields_ids_map(&rtxn)?; let faceted_fields = index.faceted_fields_ids(&rtxn)?; let field_id = fields_ids_map.id(&field_name) .with_context(|| format!("field {} not found", field_name))?; let field_type = faceted_fields.get(&field_id) .with_context(|| format!("field {} is not faceted", field_name))?; let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["facet_value", "facet_level", "documents_count", "documents_ids"])?; let db = index.facet_field_id_value_docids; let iter = facet_values_iter( rtxn, db, field_id, *field_type, |key| (0, key.to_owned()), facet_number_value_to_string, )?; for result in iter { let ((level, value), docids) = result?; let count = docids.len(); let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[value, level.to_string(), count.to_string(), docids])?; } Ok(wtr.flush()?) } fn words_level_positions_docids( index: &Index, rtxn: &heed::RoTxn, debug: bool, words: Vec, ) -> anyhow::Result<()> { let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word", "level", "position_range", "documents_count", "documents_ids"])?; for word in words.iter().map(AsRef::as_ref) { let range = { let left = (word, 0, u32::min_value(), u32::min_value()); let right = (word, u8::max_value(), u32::max_value(), u32::max_value()); left..=right }; for result in index.word_level_position_docids.range(rtxn, &range)? { let ((w, level, left, right), docids) = result?; if word != w { break } let level = level.to_string(); let count = docids.len().to_string(); let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; let position_range = format!("{:?}", left..=right); wtr.write_record(&[w, &level, &position_range, &count, &docids])?; } } Ok(wtr.flush()?) } fn docids_words_positions( index: &Index, rtxn: &heed::RoTxn, debug: bool, internal_ids: Vec, ) -> anyhow::Result<()> { let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["document_id", "word", "positions"])?; let iter: Box> = if internal_ids.is_empty() { Box::new(index.docid_word_positions.iter(rtxn)?) } else { let vec: heed::Result> = internal_ids.into_iter().map(|id| { index.docid_word_positions.prefix_iter(rtxn, &(id, "")) }).collect(); Box::new(vec?.into_iter().flatten()) }; for result in iter { let ((id, word), positions) = result?; let positions = if debug { format!("{:?}", positions) } else { format!("{:?}", positions.iter().collect::>()) }; wtr.write_record(&[&id.to_string(), word, &positions])?; } Ok(wtr.flush()?) } fn facet_stats(index: &Index, rtxn: &heed::RoTxn, field_name: String) -> anyhow::Result<()> { let fields_ids_map = index.fields_ids_map(&rtxn)?; let faceted_fields = index.faceted_fields_ids(&rtxn)?; let field_id = fields_ids_map.id(&field_name) .with_context(|| format!("field {} not found", field_name))?; let field_type = faceted_fields.get(&field_id) .with_context(|| format!("field {} is not faceted", field_name))?; let db = index.facet_field_id_value_docids; let iter = facet_values_iter( rtxn, db, field_id, *field_type, |_key| 0u8, |level, _left, _right| level, )?; println!("The database {:?} facet stats", field_name); let mut level_size = 0; let mut current_level = None; for result in iter { let (level, _) = result?; if let Some(current) = current_level { if current != level { println!("\tnumber of groups at level {}: {}", current, level_size); level_size = 0; } } current_level = Some(level); level_size += 1; } if let Some(current) = current_level { println!("\tnumber of groups at level {}: {}", current, level_size); } Ok(()) } fn export_words_fst(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use std::io::Write as _; let mut stdout = io::stdout(); let words_fst = index.words_fst(rtxn)?; stdout.write_all(words_fst.as_fst().as_bytes())?; Ok(()) } fn export_words_prefix_fst(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use std::io::Write as _; let mut stdout = io::stdout(); let words_prefixes_fst = index.words_prefixes_fst(rtxn)?; stdout.write_all(words_prefixes_fst.as_fst().as_bytes())?; Ok(()) } fn export_documents(index: &Index, rtxn: &heed::RoTxn, internal_ids: Vec) -> anyhow::Result<()> { use std::io::{BufWriter, Write as _}; use milli::{BEU32, obkv_to_json}; let stdout = io::stdout(); let mut out = BufWriter::new(stdout); let fields_ids_map = index.fields_ids_map(rtxn)?; let displayed_fields: Vec<_> = fields_ids_map.iter().map(|(id, _name)| id).collect(); let iter: Box> = if internal_ids.is_empty() { Box::new(index.documents.iter(rtxn)?.map(|result| { result.map(|(_id, obkv)| obkv) })) } else { Box::new(internal_ids.into_iter().flat_map(|id| { index.documents.get(rtxn, &BEU32::new(id)).transpose() })) }; for result in iter { let obkv = result?; let document = obkv_to_json(&displayed_fields, &fields_ids_map, obkv)?; serde_json::to_writer(&mut out, &document)?; writeln!(&mut out)?; } out.into_inner()?; Ok(()) } fn average_number_of_words_by_doc(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::DecodeIgnore; use milli::{DocumentId, BEU32StrCodec}; let mut words_counts = Vec::new(); let mut count = 0; let mut prev = None as Option<(DocumentId, u32)>; let iter = index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, DecodeIgnore>(rtxn)?; for result in iter { let ((docid, _word), ()) = result?; match prev.as_mut() { Some((prev_docid, prev_count)) if docid == *prev_docid => { *prev_count += 1; }, Some((prev_docid, prev_count)) => { words_counts.push(*prev_count); *prev_docid = docid; *prev_count = 0; count += 1; }, None => prev = Some((docid, 1)), } } if let Some((_, prev_count)) = prev.take() { words_counts.push(prev_count); count += 1; } let words_count = words_counts.into_iter().map(|c| c as usize).sum::() as f64; let count = count as f64; println!("average number of different words by document: {}", words_count / count); Ok(()) } fn average_number_of_positions_by_word(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::DecodeIgnore; use milli::BoRoaringBitmapCodec; let mut values_length = Vec::new(); let mut count = 0; let db = index.docid_word_positions.as_polymorph(); for result in db.iter::<_, DecodeIgnore, BoRoaringBitmapCodec>(rtxn)? { let ((), val) = result?; values_length.push(val.len() as u32); count += 1; } let values_length_sum = values_length.into_iter().map(|c| c as usize).sum::() as f64; let count = count as f64; println!("average number of positions by word: {}", values_length_sum / count); Ok(()) } fn size_of_databases(index: &Index, rtxn: &heed::RoTxn, names: Vec) -> anyhow::Result<()> { use heed::types::ByteSlice; let names = if names.is_empty() { ALL_DATABASE_NAMES.iter().map(|s| s.to_string()).collect() } else { names }; for name in names { let database = match name.as_str() { MAIN_DB_NAME => &index.main, WORD_PREFIX_DOCIDS_DB_NAME => index.word_prefix_docids.as_polymorph(), WORD_DOCIDS_DB_NAME => index.word_docids.as_polymorph(), DOCID_WORD_POSITIONS_DB_NAME => index.docid_word_positions.as_polymorph(), WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_pair_proximity_docids.as_polymorph(), WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_prefix_pair_proximity_docids.as_polymorph(), FACET_FIELD_ID_VALUE_DOCIDS_DB_NAME => index.facet_field_id_value_docids.as_polymorph(), FIELD_ID_DOCID_FACET_VALUES_DB_NAME => index.field_id_docid_facet_values.as_polymorph(), DOCUMENTS_DB_NAME => index.documents.as_polymorph(), unknown => anyhow::bail!("unknown database {:?}", unknown), }; let mut key_size: u64 = 0; let mut val_size: u64 = 0; for result in database.iter::<_, ByteSlice, ByteSlice>(rtxn)? { let (k, v) = result?; key_size += k.len() as u64; val_size += v.len() as u64; } println!("The {} database weigh:", name); println!("\ttotal key size: {}", Byte::from(key_size).get_appropriate_unit(true)); println!("\ttotal val size: {}", Byte::from(val_size).get_appropriate_unit(true)); println!("\ttotal size: {}", Byte::from(key_size + val_size).get_appropriate_unit(true)); } Ok(()) } fn database_stats(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Result<()> { use heed::types::ByteSlice; use heed::{Error, BytesDecode}; use roaring::RoaringBitmap; use milli::{BoRoaringBitmapCodec, CboRoaringBitmapCodec, RoaringBitmapCodec}; fn compute_stats<'a, DC: BytesDecode<'a, DItem = RoaringBitmap>>( db: heed::PolyDatabase, rtxn: &'a heed::RoTxn, name: &str, ) -> anyhow::Result<()> { let mut key_size = 0u64; let mut val_size = 0u64; let mut values_length = Vec::new(); for result in db.iter::<_, ByteSlice, ByteSlice>(rtxn)? { let (key, val) = result?; key_size += key.len() as u64; val_size += val.len() as u64; let val = DC::bytes_decode(val).ok_or(Error::Decoding)?; values_length.push(val.len() as u32); } values_length.sort_unstable(); let len = values_length.len(); let twenty_five_percentile = values_length.get(len / 4).unwrap_or(&0); let fifty_percentile = values_length.get(len / 2).unwrap_or(&0); let seventy_five_percentile = values_length.get(len * 3 / 4).unwrap_or(&0); let ninety_percentile = values_length.get(len * 90 / 100).unwrap_or(&0); let ninety_five_percentile = values_length.get(len * 95 / 100).unwrap_or(&0); let ninety_nine_percentile = values_length.get(len * 99 / 100).unwrap_or(&0); let minimum = values_length.first().unwrap_or(&0); let maximum = values_length.last().unwrap_or(&0); let count = values_length.len(); let sum = values_length.iter().map(|l| *l as u64).sum::(); println!("The {} database stats on the lengths", name); println!("\tnumber of entries: {}", count); println!("\t25th percentile (first quartile): {}", twenty_five_percentile); println!("\t50th percentile (median): {}", fifty_percentile); println!("\t75th percentile (third quartile): {}", seventy_five_percentile); println!("\t90th percentile: {}", ninety_percentile); println!("\t95th percentile: {}", ninety_five_percentile); println!("\t99th percentile: {}", ninety_nine_percentile); println!("\tminimum: {}", minimum); println!("\tmaximum: {}", maximum); println!("\taverage: {}", sum as f64 / count as f64); println!("\ttotal key size: {}", Byte::from(key_size).get_appropriate_unit(true)); println!("\ttotal val size: {}", Byte::from(val_size).get_appropriate_unit(true)); println!("\ttotal size: {}", Byte::from(key_size + val_size).get_appropriate_unit(true)); Ok(()) } match name { WORD_DOCIDS_DB_NAME => { let db = index.word_docids.as_polymorph(); compute_stats::(*db, rtxn, name) }, WORD_PREFIX_DOCIDS_DB_NAME => { let db = index.word_prefix_docids.as_polymorph(); compute_stats::(*db, rtxn, name) }, DOCID_WORD_POSITIONS_DB_NAME => { let db = index.docid_word_positions.as_polymorph(); compute_stats::(*db, rtxn, name) }, WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => { let db = index.word_pair_proximity_docids.as_polymorph(); compute_stats::(*db, rtxn, name) }, WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME => { let db = index.word_prefix_pair_proximity_docids.as_polymorph(); compute_stats::(*db, rtxn, name) }, unknown => anyhow::bail!("unknown database {:?}", unknown), } } fn word_pair_proximities_docids( index: &Index, rtxn: &heed::RoTxn, debug: bool, word1: String, word2: String, ) -> anyhow::Result<()> { use heed::types::ByteSlice; use milli::RoaringBitmapCodec; let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word1", "word2", "proximity", "documents_ids"])?; // Create the prefix key with only the pair of words. let mut prefix = Vec::with_capacity(word1.len() + word2.len() + 1); prefix.extend_from_slice(word1.as_bytes()); prefix.push(0); prefix.extend_from_slice(word2.as_bytes()); let db = index.word_pair_proximity_docids.as_polymorph(); let iter = db.prefix_iter::<_, ByteSlice, RoaringBitmapCodec>(rtxn, &prefix)?; for result in iter { let (key, docids) = result?; // Skip keys that are longer than the requested one, // a longer key means that the second word is a prefix of the request word. if key.len() != prefix.len() + 1 { continue; } let proximity = key.last().unwrap(); let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[&word1, &word2, &proximity.to_string(), &docids])?; } Ok(wtr.flush()?) }