use std::cmp::Ordering; use std::sync::{OnceLock, RwLock}; use std::thread::{self, Builder}; use big_s::S; use document_changes::{extract, DocumentChanges, IndexingContext, Progress, ThreadLocal}; pub use document_deletion::DocumentDeletion; pub use document_operation::DocumentOperation; use hashbrown::HashMap; use heed::types::{Bytes, DecodeIgnore, Str}; use heed::{RoTxn, RwTxn}; use itertools::{merge_join_by, EitherOrBoth}; pub use partial_dump::PartialDump; use rand::SeedableRng as _; use rayon::ThreadPool; use time::OffsetDateTime; pub use update_by_function::UpdateByFunction; use super::channel::*; use super::extract::*; use super::facet_search_builder::FacetSearchBuilder; use super::merger::FacetFieldIdsDelta; use super::word_fst_builder::{PrefixData, PrefixDelta, WordFstBuilder}; use super::words_prefix_docids::{ compute_word_prefix_docids, compute_word_prefix_fid_docids, compute_word_prefix_position_docids, }; use super::{StdResult, TopLevelMap}; use crate::documents::{PrimaryKey, DEFAULT_PRIMARY_KEY}; use crate::facet::FacetType; use crate::fields_ids_map::metadata::{FieldIdMapWithMetadata, MetadataBuilder}; use crate::index::main_key::{WORDS_FST_KEY, WORDS_PREFIXES_FST_KEY}; use crate::proximity::ProximityPrecision; use crate::update::del_add::DelAdd; use crate::update::new::extract::EmbeddingExtractor; use crate::update::new::words_prefix_docids::compute_exact_word_prefix_docids; use crate::update::new::{merge_and_send_docids, merge_and_send_facet_docids, FacetDatabases}; use crate::update::settings::InnerIndexSettings; use crate::update::{FacetsUpdateBulk, GrenadParameters}; use crate::vector::{ArroyWrapper, EmbeddingConfigs, Embeddings}; use crate::{ FieldsIdsMap, GlobalFieldsIdsMap, Index, InternalError, Result, ThreadPoolNoAbort, ThreadPoolNoAbortBuilder, UserError, }; pub(crate) mod de; pub mod document_changes; mod document_deletion; mod document_operation; mod partial_dump; mod update_by_function; mod steps { pub const STEPS: &[&str] = &[ "extracting documents", "extracting facets", "extracting words", "extracting word proximity", "extracting embeddings", "writing to database", "post-processing facets", "post-processing words", "finalizing", ]; const fn step(step: u16) -> (u16, &'static str) { (step, STEPS[step as usize]) } pub const fn total_steps() -> u16 { STEPS.len() as u16 } pub const fn extract_documents() -> (u16, &'static str) { step(0) } pub const fn extract_facets() -> (u16, &'static str) { step(1) } pub const fn extract_words() -> (u16, &'static str) { step(2) } pub const fn extract_word_proximity() -> (u16, &'static str) { step(3) } pub const fn extract_embeddings() -> (u16, &'static str) { step(4) } pub const fn write_db() -> (u16, &'static str) { step(5) } pub const fn post_processing_facets() -> (u16, &'static str) { step(6) } pub const fn post_processing_words() -> (u16, &'static str) { step(7) } pub const fn finalizing() -> (u16, &'static str) { step(8) } } /// This is the main function of this crate. /// /// Give it the output of the [`Indexer::document_changes`] method and it will execute it in the [`rayon::ThreadPool`]. /// /// TODO return stats #[allow(clippy::too_many_arguments)] // clippy: 😝 pub fn index<'pl, 'indexer, 'index, DC, MSP, SP>( wtxn: &mut RwTxn, index: &'index Index, db_fields_ids_map: &'indexer FieldsIdsMap, new_fields_ids_map: FieldsIdsMap, new_primary_key: Option>, pool: &ThreadPool, document_changes: &DC, embedders: EmbeddingConfigs, must_stop_processing: &'indexer MSP, send_progress: &'indexer SP, ) -> Result<()> where DC: DocumentChanges<'pl>, MSP: Fn() -> bool + Sync, SP: Fn(Progress) + Sync, { let (extractor_sender, writer_receiver) = extractor_writer_channel(10_000); let metadata_builder = MetadataBuilder::from_index(index, wtxn)?; let new_fields_ids_map = FieldIdMapWithMetadata::new(new_fields_ids_map, metadata_builder); let new_fields_ids_map = RwLock::new(new_fields_ids_map); let fields_ids_map_store = ThreadLocal::with_capacity(pool.current_num_threads()); let mut extractor_allocs = ThreadLocal::with_capacity(pool.current_num_threads()); let doc_allocs = ThreadLocal::with_capacity(pool.current_num_threads()); let indexing_context = IndexingContext { index, db_fields_ids_map, new_fields_ids_map: &new_fields_ids_map, doc_allocs: &doc_allocs, fields_ids_map_store: &fields_ids_map_store, must_stop_processing, send_progress, }; let total_steps = steps::total_steps(); let mut field_distribution = index.field_distribution(wtxn)?; let mut document_ids = index.documents_ids(wtxn)?; thread::scope(|s| -> Result<()> { let indexer_span = tracing::Span::current(); let embedders = &embedders; // prevent moving the field_distribution and document_ids in the inner closure... let field_distribution = &mut field_distribution; let document_ids = &mut document_ids; // TODO manage the errors correctly let extractor_handle = Builder::new().name(S("indexer-extractors")).spawn_scoped(s, move || { pool.in_place_scope(|_s| { let span = tracing::trace_span!(target: "indexing::documents", parent: &indexer_span, "extract"); let _entered = span.enter(); let rtxn = index.read_txn()?; // document but we need to create a function that collects and compresses documents. let document_sender = extractor_sender.documents(); let document_extractor = DocumentsExtractor::new(&document_sender, embedders); let datastore = ThreadLocal::with_capacity(pool.current_num_threads()); let (finished_steps, step_name) = steps::extract_documents(); extract(document_changes, &document_extractor, indexing_context, &mut extractor_allocs, &datastore, finished_steps, total_steps, step_name)?; for document_extractor_data in datastore { let document_extractor_data = document_extractor_data.0.into_inner(); for (field, delta) in document_extractor_data.field_distribution_delta { let current = field_distribution.entry(field).or_default(); // adding the delta should never cause a negative result, as we are removing fields that previously existed. *current = current.saturating_add_signed(delta); } document_extractor_data.docids_delta.apply_to(document_ids); } field_distribution.retain(|_, v| *v == 0); const TEN_GIB: usize = 10 * 1024 * 1024 * 1024; let current_num_threads = rayon::current_num_threads(); let max_memory = TEN_GIB / current_num_threads; eprintln!("A maximum of {max_memory} bytes will be used for each of the {current_num_threads} threads"); let grenad_parameters = GrenadParameters { max_memory: Some(max_memory), ..GrenadParameters::default() }; let facet_field_ids_delta; { let span = tracing::trace_span!(target: "indexing::documents::extract", "faceted"); let _entered = span.enter(); let (finished_steps, step_name) = steps::extract_facets(); facet_field_ids_delta = merge_and_send_facet_docids( FacetedDocidsExtractor::run_extraction(grenad_parameters, document_changes, indexing_context, &mut extractor_allocs, finished_steps, total_steps, step_name)?, FacetDatabases::new(index), index, extractor_sender.facet_docids(), )?; } { let span = tracing::trace_span!(target: "indexing::documents::extract", "word_docids"); let _entered = span.enter(); let (finished_steps, step_name) = steps::extract_words(); let WordDocidsCaches { word_docids, word_fid_docids, exact_word_docids, word_position_docids, fid_word_count_docids, } = WordDocidsExtractors::run_extraction(grenad_parameters, document_changes, indexing_context, &mut extractor_allocs, finished_steps, total_steps, step_name)?; // TODO Word Docids Merger // extractor_sender.send_searchable::(word_docids).unwrap(); { let span = tracing::trace_span!(target: "indexing::documents::merge", "word_docids"); let _entered = span.enter(); merge_and_send_docids( word_docids, index.word_docids.remap_types(), index, extractor_sender.docids::(), )?; } // Word Fid Docids Merging // extractor_sender.send_searchable::(word_fid_docids).unwrap(); { let span = tracing::trace_span!(target: "indexing::documents::merge", "word_fid_docids"); let _entered = span.enter(); merge_and_send_docids( word_fid_docids, index.word_fid_docids.remap_types(), index, extractor_sender.docids::() )?; } // Exact Word Docids Merging // extractor_sender.send_searchable::(exact_word_docids).unwrap(); { let span = tracing::trace_span!(target: "indexing::documents::merge", "exact_word_docids"); let _entered = span.enter(); merge_and_send_docids( exact_word_docids, index.exact_word_docids.remap_types(), index, extractor_sender.docids::(), )?; } // Word Position Docids Merging // extractor_sender.send_searchable::(word_position_docids).unwrap(); { let span = tracing::trace_span!(target: "indexing::documents::merge", "word_position_docids"); let _entered = span.enter(); merge_and_send_docids( word_position_docids, index.word_position_docids.remap_types(), index, extractor_sender.docids::(), )?; } // Fid Word Count Docids Merging // extractor_sender.send_searchable::(fid_word_count_docids).unwrap(); { let span = tracing::trace_span!(target: "indexing::documents::merge", "fid_word_count_docids"); let _entered = span.enter(); merge_and_send_docids( fid_word_count_docids, index.field_id_word_count_docids.remap_types(), index, extractor_sender.docids::(), )?; } } // run the proximity extraction only if the precision is by word // this works only if the settings didn't change during this transaction. let proximity_precision = index.proximity_precision(&rtxn)?.unwrap_or_default(); if proximity_precision == ProximityPrecision::ByWord { let span = tracing::trace_span!(target: "indexing::documents::extract", "word_pair_proximity_docids"); let _entered = span.enter(); let (finished_steps, step_name) = steps::extract_word_proximity(); let caches = ::run_extraction(grenad_parameters, document_changes, indexing_context, &mut extractor_allocs, finished_steps, total_steps, step_name)?; merge_and_send_docids( caches, index.word_pair_proximity_docids.remap_types(), index, extractor_sender.docids::(), )?; } 'vectors: { let span = tracing::trace_span!(target: "indexing::documents::extract", "vectors"); let _entered = span.enter(); let index_embeddings = index.embedding_configs(&rtxn)?; if index_embeddings.is_empty() { break 'vectors; } let embedding_sender = extractor_sender.embeddings(); let extractor = EmbeddingExtractor::new(embedders, &embedding_sender, field_distribution, request_threads()); let datastore = ThreadLocal::with_capacity(pool.current_num_threads()); let (finished_steps, step_name) = steps::extract_embeddings(); extract(document_changes, &extractor, indexing_context, &mut extractor_allocs, &datastore, finished_steps, total_steps, step_name)?; let mut user_provided = HashMap::new(); for data in datastore { let data = data.into_inner().0; for (embedder, deladd) in data.into_iter() { let user_provided = user_provided.entry(embedder).or_insert(Default::default()); if let Some(del) = deladd.del { *user_provided -= del; } if let Some(add) = deladd.add { *user_provided |= add; } } } embedding_sender.finish(user_provided).unwrap(); } { let span = tracing::trace_span!(target: "indexing::documents::extract", "FINISH"); let _entered = span.enter(); let (finished_steps, step_name) = steps::write_db(); (indexing_context.send_progress)(Progress { finished_steps, total_steps, step_name, finished_total_documents: None }); } // TODO THIS IS TOO MUCH // - [ ] Extract fieldid docid facet number // - [ ] Extract fieldid docid facet string // - [ ] Extract facetid string fst // - [ ] Extract facetid normalized string strings // TODO Inverted Indexes again // - [x] Extract fieldid facet isempty docids // - [x] Extract fieldid facet isnull docids // - [x] Extract fieldid facet exists docids // TODO This is the normal system // - [x] Extract fieldid facet number docids // - [x] Extract fieldid facet string docids Result::Ok(facet_field_ids_delta) }) })?; let global_fields_ids_map = GlobalFieldsIdsMap::new(&new_fields_ids_map); let indexer_span = tracing::Span::current(); let vector_arroy = index.vector_arroy; let mut rng = rand::rngs::StdRng::seed_from_u64(42); let indexer_span = tracing::Span::current(); let arroy_writers: Result> = embedders .inner_as_ref() .iter() .map(|(embedder_name, (embedder, _, was_quantized))| { let embedder_index = index.embedder_category_id.get(wtxn, embedder_name)?.ok_or( InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None, }, )?; let dimensions = embedder.dimensions(); let writer = ArroyWrapper::new(vector_arroy, embedder_index, *was_quantized); Ok(( embedder_index, (embedder_name.as_str(), embedder.as_ref(), writer, dimensions), )) }) .collect(); let mut arroy_writers = arroy_writers?; for operation in writer_receiver { match operation { WriterOperation::DbOperation(db_operation) => { let database = db_operation.database(index); match db_operation.entry() { EntryOperation::Delete(e) => { if !database.delete(wtxn, e.entry())? { unreachable!("We tried to delete an unknown key") } } EntryOperation::Write(e) => database.put(wtxn, e.key(), e.value())?, } } WriterOperation::ArroyOperation(arroy_operation) => match arroy_operation { ArroyOperation::DeleteVectors { docid } => { for (_embedder_index, (_embedder_name, _embedder, writer, dimensions)) in &mut arroy_writers { let dimensions = *dimensions; writer.del_items(wtxn, dimensions, docid)?; } } ArroyOperation::SetVectors { docid, embedder_id, embeddings: raw_embeddings, } => { let (_, _, writer, dimensions) = arroy_writers.get(&embedder_id).expect("requested a missing embedder"); // TODO: switch to Embeddings let mut embeddings = Embeddings::new(*dimensions); for embedding in raw_embeddings { embeddings.append(embedding).unwrap(); } writer.del_items(wtxn, *dimensions, docid)?; writer.add_items(wtxn, docid, &embeddings)?; } ArroyOperation::SetVector { docid, embedder_id, embedding } => { let (_, _, writer, dimensions) = arroy_writers.get(&embedder_id).expect("requested a missing embedder"); writer.del_items(wtxn, *dimensions, docid)?; writer.add_item(wtxn, docid, &embedding)?; } ArroyOperation::Finish { mut user_provided } => { let span = tracing::trace_span!(target: "indexing::vectors", parent: &indexer_span, "build"); let _entered = span.enter(); for (_embedder_index, (_embedder_name, _embedder, writer, dimensions)) in &mut arroy_writers { let dimensions = *dimensions; writer.build_and_quantize( wtxn, &mut rng, dimensions, false, &indexing_context.must_stop_processing, )?; } let mut configs = index.embedding_configs(wtxn)?; for config in &mut configs { if let Some(user_provided) = user_provided.remove(&config.name) { config.user_provided = user_provided; } } index.put_embedding_configs(wtxn, configs)?; } }, } } let facet_field_ids_delta = extractor_handle.join().unwrap()?; let (finished_steps, step_name) = steps::post_processing_facets(); (indexing_context.send_progress)(Progress { finished_steps, total_steps, step_name, finished_total_documents: None, }); compute_facet_search_database(index, wtxn, global_fields_ids_map)?; compute_facet_level_database(index, wtxn, facet_field_ids_delta)?; let (finished_steps, step_name) = steps::post_processing_words(); (indexing_context.send_progress)(Progress { finished_steps, total_steps, step_name, finished_total_documents: None, }); if let Some(prefix_delta) = compute_word_fst(index, wtxn)? { compute_prefix_database(index, wtxn, prefix_delta)?; } let (finished_steps, step_name) = steps::finalizing(); (indexing_context.send_progress)(Progress { finished_steps, total_steps, step_name, finished_total_documents: None, }); Ok(()) as Result<_> })?; // required to into_inner the new_fields_ids_map drop(fields_ids_map_store); let new_fields_ids_map = new_fields_ids_map.into_inner().unwrap(); index.put_fields_ids_map(wtxn, new_fields_ids_map.as_fields_ids_map())?; if let Some(new_primary_key) = new_primary_key { index.put_primary_key(wtxn, new_primary_key.name())?; } // used to update the localized and weighted maps while sharing the update code with the settings pipeline. let mut inner_index_settings = InnerIndexSettings::from_index(index, wtxn)?; inner_index_settings.recompute_facets(wtxn, index)?; inner_index_settings.recompute_searchables(wtxn, index)?; index.put_field_distribution(wtxn, &field_distribution)?; index.put_documents_ids(wtxn, &document_ids)?; index.set_updated_at(wtxn, &OffsetDateTime::now_utc())?; Ok(()) } #[tracing::instrument(level = "trace", skip_all, target = "indexing::prefix")] fn compute_prefix_database( index: &Index, wtxn: &mut RwTxn, prefix_delta: PrefixDelta, ) -> Result<()> { eprintln!("prefix_delta: {:?}", &prefix_delta); let PrefixDelta { modified, deleted } = prefix_delta; // Compute word prefix docids compute_word_prefix_docids(wtxn, index, &modified, &deleted)?; // Compute exact word prefix docids compute_exact_word_prefix_docids(wtxn, index, &modified, &deleted)?; // Compute word prefix fid docids compute_word_prefix_fid_docids(wtxn, index, &modified, &deleted)?; // Compute word prefix position docids compute_word_prefix_position_docids(wtxn, index, &modified, &deleted) } #[tracing::instrument(level = "trace", skip_all, target = "indexing")] fn compute_word_fst(index: &Index, wtxn: &mut RwTxn) -> Result> { let rtxn = index.read_txn()?; let words_fst = index.words_fst(&rtxn)?; let mut word_fst_builder = WordFstBuilder::new(&words_fst)?; let prefix_settings = index.prefix_settings(&rtxn)?; word_fst_builder.with_prefix_settings(prefix_settings); let previous_words = index.word_docids.iter(&rtxn)?.remap_data_type::(); let current_words = index.word_docids.iter(wtxn)?.remap_data_type::(); for eob in merge_join_by(previous_words, current_words, |lhs, rhs| match (lhs, rhs) { (Ok((l, _)), Ok((r, _))) => l.cmp(r), (Err(_), _) | (_, Err(_)) => Ordering::Equal, }) { match eob { EitherOrBoth::Both(lhs, rhs) => { let (word, lhs_bytes) = lhs?; let (_, rhs_bytes) = rhs?; if lhs_bytes != rhs_bytes { word_fst_builder.register_word(DelAdd::Addition, word.as_ref())?; } } EitherOrBoth::Left(result) => { let (word, _) = result?; word_fst_builder.register_word(DelAdd::Deletion, word.as_ref())?; } EitherOrBoth::Right(result) => { let (word, _) = result?; word_fst_builder.register_word(DelAdd::Addition, word.as_ref())?; } } } let span = tracing::trace_span!(target: "indexing::documents::merge", "words_fst"); let _entered = span.enter(); let (word_fst_mmap, prefix_data) = word_fst_builder.build(index, &rtxn)?; index.main.remap_types::().put(wtxn, WORDS_FST_KEY, &word_fst_mmap)?; if let Some(PrefixData { prefixes_fst_mmap, prefix_delta }) = prefix_data { index.main.remap_types::().put( wtxn, WORDS_PREFIXES_FST_KEY, &prefixes_fst_mmap, )?; Ok(Some(prefix_delta)) } else { Ok(None) } } #[tracing::instrument(level = "trace", skip_all, target = "indexing::facet_search")] fn compute_facet_search_database( index: &Index, wtxn: &mut RwTxn, global_fields_ids_map: GlobalFieldsIdsMap, ) -> Result<()> { let rtxn = index.read_txn()?; let localized_attributes_rules = index.localized_attributes_rules(&rtxn)?; let mut facet_search_builder = FacetSearchBuilder::new( global_fields_ids_map, localized_attributes_rules.unwrap_or_default(), ); let previous_facet_id_string_docids = index .facet_id_string_docids .iter(&rtxn)? .remap_data_type::() .filter(|r| r.as_ref().map_or(true, |(k, _)| k.level == 0)); let current_facet_id_string_docids = index .facet_id_string_docids .iter(wtxn)? .remap_data_type::() .filter(|r| r.as_ref().map_or(true, |(k, _)| k.level == 0)); for eob in merge_join_by( previous_facet_id_string_docids, current_facet_id_string_docids, |lhs, rhs| match (lhs, rhs) { (Ok((l, _)), Ok((r, _))) => l.cmp(r), (Err(_), _) | (_, Err(_)) => Ordering::Equal, }, ) { match eob { EitherOrBoth::Both(lhs, rhs) => { let (_, _) = lhs?; let (_, _) = rhs?; } EitherOrBoth::Left(result) => { let (key, _) = result?; facet_search_builder .register_from_key(DelAdd::Deletion, key.left_bound.as_ref())?; } EitherOrBoth::Right(result) => { let (key, _) = result?; facet_search_builder .register_from_key(DelAdd::Addition, key.left_bound.as_ref())?; } } } facet_search_builder.merge_and_write(index, wtxn, &rtxn) } #[tracing::instrument(level = "trace", skip_all, target = "indexing::facet_field_ids")] fn compute_facet_level_database( index: &Index, wtxn: &mut RwTxn, facet_field_ids_delta: FacetFieldIdsDelta, ) -> Result<()> { eprintln!("facet_field_ids_delta: {:?}", &facet_field_ids_delta); if let Some(modified_facet_string_ids) = facet_field_ids_delta.modified_facet_string_ids() { let span = tracing::trace_span!(target: "indexing::facet_field_ids", "string"); let _entered = span.enter(); FacetsUpdateBulk::new_not_updating_level_0( index, modified_facet_string_ids, FacetType::String, ) .execute(wtxn)?; } if let Some(modified_facet_number_ids) = facet_field_ids_delta.modified_facet_number_ids() { let span = tracing::trace_span!(target: "indexing::facet_field_ids", "number"); let _entered = span.enter(); FacetsUpdateBulk::new_not_updating_level_0( index, modified_facet_number_ids, FacetType::Number, ) .execute(wtxn)?; } Ok(()) } /// Returns the primary key that has already been set for this index or the /// one we will guess by searching for the first key that contains "id" as a substring, /// and whether the primary key changed /// TODO move this elsewhere pub fn retrieve_or_guess_primary_key<'a>( rtxn: &'a RoTxn<'a>, index: &Index, new_fields_ids_map: &mut FieldsIdsMap, primary_key_from_op: Option<&'a str>, first_document: Option<&'a TopLevelMap<'a>>, ) -> Result, bool), UserError>> { // make sure that we have a declared primary key, either fetching it from the index or attempting to guess it. // do we have an existing declared primary key? let (primary_key, has_changed) = if let Some(primary_key_from_db) = index.primary_key(rtxn)? { // did we request a primary key in the operation? match primary_key_from_op { // we did, and it is different from the DB one Some(primary_key_from_op) if primary_key_from_op != primary_key_from_db => { // is the index empty? if index.number_of_documents(rtxn)? == 0 { // change primary key (primary_key_from_op, true) } else { return Ok(Err(UserError::PrimaryKeyCannotBeChanged( primary_key_from_db.to_string(), ))); } } _ => (primary_key_from_db, false), } } else { // no primary key in the DB => let's set one // did we request a primary key in the operation? let primary_key = if let Some(primary_key_from_op) = primary_key_from_op { // set primary key from operation primary_key_from_op } else { // guess primary key let first_document = match first_document { Some(document) => document, // previous indexer when no pk is set + we send an empty payload => index_primary_key_no_candidate_found None => return Ok(Err(UserError::NoPrimaryKeyCandidateFound)), }; let mut guesses: Vec<&str> = first_document .keys() .map(AsRef::as_ref) .filter(|name| name.to_lowercase().ends_with(DEFAULT_PRIMARY_KEY)) .collect(); // sort the keys in lexicographical order, so that fields are always in the same order. guesses.sort_unstable(); match guesses.as_slice() { [] => return Ok(Err(UserError::NoPrimaryKeyCandidateFound)), [name] => { tracing::info!("Primary key was not specified in index. Inferred to '{name}'"); *name } multiple => { return Ok(Err(UserError::MultiplePrimaryKeyCandidatesFound { candidates: multiple .iter() .map(|candidate| candidate.to_string()) .collect(), })) } } }; (primary_key, true) }; match PrimaryKey::new_or_insert(primary_key, new_fields_ids_map) { Ok(primary_key) => Ok(Ok((primary_key, has_changed))), Err(err) => Ok(Err(err)), } } fn request_threads() -> &'static ThreadPoolNoAbort { static REQUEST_THREADS: OnceLock = OnceLock::new(); REQUEST_THREADS.get_or_init(|| { ThreadPoolNoAbortBuilder::new() .num_threads(crate::vector::REQUEST_PARALLELISM) .thread_name(|index| format!("embedding-request-{index}")) .build() .unwrap() }) }