use std::borrow::Cow; use std::fs::File; use grenad::CompressionType; use heed::types::ByteSlice; use heed::{BytesEncode, Error, RoTxn, RwTxn}; use roaring::RoaringBitmap; use super::{FACET_GROUP_SIZE, FACET_MIN_LEVEL_SIZE}; use crate::facet::FacetType; use crate::heed_codec::facet::{ FacetGroupKey, FacetGroupKeyCodec, FacetGroupValue, FacetGroupValueCodec, }; use crate::heed_codec::ByteSliceRefCodec; use crate::update::index_documents::{create_writer, writer_into_reader}; use crate::{CboRoaringBitmapCodec, FieldId, Index, Result}; /// Algorithm to insert elememts into the `facet_id_(string/f64)_docids` databases /// by rebuilding the database "from scratch". /// /// First, the new elements are inserted into the level 0 of the database. Then, the /// higher levels are cleared and recomputed from the content of level 0. /// /// Finally, the `faceted_documents_ids` value in the main database of `Index` /// is updated to contain the new set of faceted documents. pub struct FacetsUpdateBulk<'i> { index: &'i Index, group_size: u8, min_level_size: u8, facet_type: FacetType, field_ids: Vec, // None if level 0 does not need to be updated new_data: Option>, } impl<'i> FacetsUpdateBulk<'i> { pub fn new( index: &'i Index, field_ids: Vec, facet_type: FacetType, new_data: grenad::Reader, group_size: u8, min_level_size: u8, ) -> FacetsUpdateBulk<'i> { FacetsUpdateBulk { index, field_ids, group_size, min_level_size, facet_type, new_data: Some(new_data), } } pub fn new_not_updating_level_0( index: &'i Index, field_ids: Vec, facet_type: FacetType, ) -> FacetsUpdateBulk<'i> { FacetsUpdateBulk { index, field_ids, group_size: FACET_GROUP_SIZE, min_level_size: FACET_MIN_LEVEL_SIZE, facet_type, new_data: None, } } #[logging_timer::time("FacetsUpdateBulk::{}")] pub fn execute(self, wtxn: &mut heed::RwTxn) -> Result<()> { let Self { index, field_ids, group_size, min_level_size, facet_type, new_data } = self; let db = match facet_type { FacetType::String => index .facet_id_string_docids .remap_key_type::>(), FacetType::Number => { index.facet_id_f64_docids.remap_key_type::>() } }; let inner = FacetsUpdateBulkInner { db, new_data, group_size, min_level_size }; inner.update(wtxn, &field_ids, |wtxn, field_id, all_docids| { index.put_faceted_documents_ids(wtxn, field_id, facet_type, &all_docids)?; Ok(()) })?; Ok(()) } } /// Implementation of `FacetsUpdateBulk` that is independent of milli's `Index` type pub(crate) struct FacetsUpdateBulkInner { pub db: heed::Database, FacetGroupValueCodec>, pub new_data: Option>, pub group_size: u8, pub min_level_size: u8, } impl FacetsUpdateBulkInner { pub fn update( mut self, wtxn: &mut RwTxn, field_ids: &[u16], mut handle_all_docids: impl FnMut(&mut RwTxn, FieldId, RoaringBitmap) -> Result<()>, ) -> Result<()> { self.update_level0(wtxn)?; for &field_id in field_ids.iter() { self.clear_levels(wtxn, field_id)?; } for &field_id in field_ids.iter() { let (level_readers, all_docids) = self.compute_levels_for_field_id(field_id, &wtxn)?; handle_all_docids(wtxn, field_id, all_docids)?; for level_reader in level_readers { let mut cursor = level_reader.into_cursor()?; while let Some((k, v)) = cursor.move_on_next()? { self.db.remap_types::().put(wtxn, k, v)?; } } } Ok(()) } fn clear_levels(&self, wtxn: &mut heed::RwTxn, field_id: FieldId) -> Result<()> { let left = FacetGroupKey::<&[u8]> { field_id, level: 1, left_bound: &[] }; let right = FacetGroupKey::<&[u8]> { field_id, level: u8::MAX, left_bound: &[] }; let range = left..=right; self.db.delete_range(wtxn, &range).map(drop)?; Ok(()) } fn update_level0(&mut self, wtxn: &mut RwTxn) -> Result<()> { let new_data = match self.new_data.take() { Some(x) => x, None => return Ok(()), }; if self.db.is_empty(wtxn)? { let mut buffer = Vec::new(); let mut database = self.db.iter_mut(wtxn)?.remap_types::(); let mut cursor = new_data.into_cursor()?; while let Some((key, value)) = cursor.move_on_next()? { buffer.clear(); // the group size for level 0 buffer.push(1); // then we extend the buffer with the docids bitmap buffer.extend_from_slice(value); unsafe { database.append(key, &buffer)? }; } } else { let mut buffer = Vec::new(); let database = self.db.remap_types::(); let mut cursor = new_data.into_cursor()?; while let Some((key, value)) = cursor.move_on_next()? { // the value is a CboRoaringBitmap, but I still need to prepend the // group size for level 0 (= 1) to it buffer.clear(); buffer.push(1); // then we extend the buffer with the docids bitmap match database.get(wtxn, key)? { Some(prev_value) => { let old_bitmap = &prev_value[1..]; CboRoaringBitmapCodec::merge_into( &[Cow::Borrowed(value), Cow::Borrowed(old_bitmap)], &mut buffer, )?; } None => { buffer.extend_from_slice(value); } }; database.put(wtxn, key, &buffer)?; } } Ok(()) } fn compute_levels_for_field_id( &self, field_id: FieldId, txn: &RoTxn, ) -> Result<(Vec>, RoaringBitmap)> { let mut all_docids = RoaringBitmap::new(); let subwriters = self.compute_higher_levels(txn, field_id, 32, &mut |bitmaps, _| { for bitmap in bitmaps { all_docids |= bitmap; } Ok(()) })?; Ok((subwriters, all_docids)) } fn read_level_0<'t>( &self, rtxn: &'t RoTxn, field_id: u16, handle_group: &mut dyn FnMut(&[RoaringBitmap], &'t [u8]) -> Result<()>, ) -> Result<()> { // we read the elements one by one and // 1. keep track of the left bound // 2. fill the `bitmaps` vector to give it to level 1 once `level_group_size` elements were read let mut bitmaps = vec![]; let mut level_0_prefix = vec![]; level_0_prefix.extend_from_slice(&field_id.to_be_bytes()); level_0_prefix.push(0); let level_0_iter = self .db .as_polymorph() .prefix_iter::<_, ByteSlice, ByteSlice>(rtxn, level_0_prefix.as_slice())? .remap_types::, FacetGroupValueCodec>(); let mut left_bound: &[u8] = &[]; let mut first_iteration_for_new_group = true; for el in level_0_iter { let (key, value) = el?; let bound = key.left_bound; let docids = value.bitmap; if first_iteration_for_new_group { left_bound = bound; first_iteration_for_new_group = false; } bitmaps.push(docids); if bitmaps.len() == self.group_size as usize { handle_group(&bitmaps, left_bound)?; first_iteration_for_new_group = true; bitmaps.clear(); } } // don't forget to give the leftover bitmaps as well if !bitmaps.is_empty() { handle_group(&bitmaps, left_bound)?; bitmaps.clear(); } Ok(()) } /// Compute the content of the database levels from its level 0 for the given field id. /// /// ## Returns: /// A vector of grenad::Reader. The reader at index `i` corresponds to the elements of level `i + 1` /// that must be inserted into the database. fn compute_higher_levels<'t>( &self, rtxn: &'t RoTxn, field_id: u16, level: u8, handle_group: &mut dyn FnMut(&[RoaringBitmap], &'t [u8]) -> Result<()>, ) -> Result>> { if level == 0 { self.read_level_0(rtxn, field_id, handle_group)?; // Level 0 is already in the database return Ok(vec![]); } // level >= 1 // we compute each element of this level based on the elements of the level below it // once we have computed `level_group_size` elements, we give the left bound // of those elements, and their bitmaps, to the level above let mut cur_writer = create_writer(CompressionType::None, None, tempfile::tempfile()?); let mut cur_writer_len: usize = 0; let mut group_sizes = vec![]; let mut left_bounds = vec![]; let mut bitmaps = vec![]; // compute the levels below // in the callback, we fill `cur_writer` with the correct elements for this level let mut sub_writers = self.compute_higher_levels( rtxn, field_id, level - 1, &mut |sub_bitmaps, left_bound| { let mut combined_bitmap = RoaringBitmap::default(); for bitmap in sub_bitmaps { combined_bitmap |= bitmap; } group_sizes.push(sub_bitmaps.len() as u8); left_bounds.push(left_bound); bitmaps.push(combined_bitmap); if bitmaps.len() != self.group_size as usize { return Ok(()); } let left_bound = left_bounds.first().unwrap(); handle_group(&bitmaps, left_bound)?; for ((bitmap, left_bound), group_size) in bitmaps.drain(..).zip(left_bounds.drain(..)).zip(group_sizes.drain(..)) { let key = FacetGroupKey { field_id, level, left_bound }; let key = FacetGroupKeyCodec::::bytes_encode(&key) .ok_or(Error::Encoding)?; let value = FacetGroupValue { size: group_size, bitmap }; let value = FacetGroupValueCodec::bytes_encode(&value).ok_or(Error::Encoding)?; cur_writer.insert(key, value)?; cur_writer_len += 1; } Ok(()) }, )?; // don't forget to insert the leftover elements into the writer as well // but only do so if the current number of elements to be inserted into this // levelcould grow to the minimum level size if !bitmaps.is_empty() && (cur_writer_len >= self.min_level_size as usize - 1) { // the length of bitmaps is between 0 and group_size assert!(bitmaps.len() < self.group_size as usize); assert!(cur_writer_len > 0); let left_bound = left_bounds.first().unwrap(); handle_group(&bitmaps, left_bound)?; // Note: how many bitmaps are there here? for ((bitmap, left_bound), group_size) in bitmaps.drain(..).zip(left_bounds.drain(..)).zip(group_sizes.drain(..)) { let key = FacetGroupKey { field_id, level, left_bound }; let key = FacetGroupKeyCodec::::bytes_encode(&key) .ok_or(Error::Encoding)?; let value = FacetGroupValue { size: group_size, bitmap }; let value = FacetGroupValueCodec::bytes_encode(&value).ok_or(Error::Encoding)?; cur_writer.insert(key, value)?; cur_writer_len += 1; } } // if we inserted enough elements to reach the minimum level size, then we push the writer if cur_writer_len as u8 >= self.min_level_size { sub_writers.push(writer_into_reader(cur_writer)?); } else { // otherwise, if there are still leftover elements, we give them to the level above // this is necessary in order to get the union of all docids if !bitmaps.is_empty() { handle_group(&bitmaps, left_bounds.first().unwrap())?; } } return Ok(sub_writers); } } #[cfg(test)] mod tests { use std::iter::once; use roaring::RoaringBitmap; use crate::heed_codec::facet::OrderedF64Codec; use crate::milli_snap; use crate::update::facet::tests::FacetIndex; #[test] fn insert() { let test = |name: &str, group_size: u8, min_level_size: u8| { let index = FacetIndex::::new(group_size, 0 /*NA*/, min_level_size); let mut elements = Vec::<((u16, f64), RoaringBitmap)>::new(); for i in 0..1_000u32 { // field id = 0, left_bound = i, docids = [i] elements.push(((0, i as f64), once(i).collect())); } for i in 0..100u32 { // field id = 1, left_bound = i, docids = [i] elements.push(((1, i as f64), once(i).collect())); } let mut wtxn = index.env.write_txn().unwrap(); index.bulk_insert(&mut wtxn, &[0, 1], elements.iter()); index.verify_structure_validity(&wtxn, 0); index.verify_structure_validity(&wtxn, 1); wtxn.commit().unwrap(); milli_snap!(format!("{index}"), name); }; test("default", 4, 5); test("small_group_small_min_level", 2, 2); test("small_group_large_min_level", 2, 128); test("large_group_small_min_level", 16, 2); test("odd_group_odd_min_level", 7, 3); } #[test] fn insert_delete_field_insert() { let test = |name: &str, group_size: u8, min_level_size: u8| { let index = FacetIndex::::new(group_size, 0 /*NA*/, min_level_size); let mut wtxn = index.env.write_txn().unwrap(); let mut elements = Vec::<((u16, f64), RoaringBitmap)>::new(); for i in 0..100u32 { // field id = 0, left_bound = i, docids = [i] elements.push(((0, i as f64), once(i).collect())); } for i in 0..100u32 { // field id = 1, left_bound = i, docids = [i] elements.push(((1, i as f64), once(i).collect())); } index.bulk_insert(&mut wtxn, &[0, 1], elements.iter()); index.verify_structure_validity(&wtxn, 0); index.verify_structure_validity(&wtxn, 1); // delete all the elements for the facet id 0 for i in 0..100u32 { index.delete_single_docid(&mut wtxn, 0, &(i as f64), i); } index.verify_structure_validity(&wtxn, 0); index.verify_structure_validity(&wtxn, 1); let mut elements = Vec::<((u16, f64), RoaringBitmap)>::new(); // then add some elements again for the facet id 1 for i in 0..110u32 { // field id = 1, left_bound = i, docids = [i] elements.push(((1, i as f64), once(i).collect())); } index.verify_structure_validity(&wtxn, 0); index.verify_structure_validity(&wtxn, 1); index.bulk_insert(&mut wtxn, &[0, 1], elements.iter()); wtxn.commit().unwrap(); milli_snap!(format!("{index}"), name); }; test("default", 4, 5); test("small_group_small_min_level", 2, 2); test("small_group_large_min_level", 2, 128); test("large_group_small_min_level", 16, 2); test("odd_group_odd_min_level", 7, 3); } }