use std::collections::{BTreeMap, HashSet}; use std::ops::ControlFlow; use std::{fmt, mem}; use heed::types::ByteSlice; use heed::BytesDecode; use roaring::RoaringBitmap; use crate::error::UserError; use crate::facet::FacetType; use crate::heed_codec::facet::{ ByteSliceRef, FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec, OrderedF64Codec, StrRefCodec, }; use crate::search::facet::facet_distribution_iter; use crate::{FieldId, Index, Result}; /// The default number of values by facets that will /// be fetched from the key-value store. pub const DEFAULT_VALUES_PER_FACET: usize = 100; /// Threshold on the number of candidates that will make /// the system to choose between one algorithm or another. const CANDIDATES_THRESHOLD: u64 = 3000; pub struct FacetDistribution<'a> { facets: Option>, candidates: Option, max_values_per_facet: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> FacetDistribution<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> FacetDistribution<'a> { FacetDistribution { facets: None, candidates: None, max_values_per_facet: DEFAULT_VALUES_PER_FACET, rtxn, index, } } pub fn facets, A: AsRef>(&mut self, names: I) -> &mut Self { self.facets = Some(names.into_iter().map(|s| s.as_ref().to_string()).collect()); self } pub fn max_values_per_facet(&mut self, max: usize) -> &mut Self { self.max_values_per_facet = max; self } pub fn candidates(&mut self, candidates: RoaringBitmap) -> &mut Self { self.candidates = Some(candidates); self } /// There is a small amount of candidates OR we ask for facet string values so we /// decide to iterate over the facet values of each one of them, one by one. fn facet_distribution_from_documents( &self, field_id: FieldId, facet_type: FacetType, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { match facet_type { FacetType::Number => { let mut key_buffer: Vec<_> = field_id.to_be_bytes().iter().copied().collect(); let distribution_prelength = distribution.len(); let db = self.index.field_id_docid_facet_f64s; for docid in candidates.into_iter() { key_buffer.truncate(mem::size_of::()); key_buffer.extend_from_slice(&docid.to_be_bytes()); let iter = db .remap_key_type::() .prefix_iter(self.rtxn, &key_buffer)? .remap_key_type::(); for result in iter { let ((_, _, value), ()) = result?; *distribution.entry(value.to_string()).or_insert(0) += 1; if distribution.len() - distribution_prelength == self.max_values_per_facet { break; } } } } FacetType::String => { let mut normalized_distribution = BTreeMap::new(); let mut key_buffer: Vec<_> = field_id.to_be_bytes().iter().copied().collect(); let db = self.index.field_id_docid_facet_strings; 'outer: for docid in candidates.into_iter() { key_buffer.truncate(mem::size_of::()); key_buffer.extend_from_slice(&docid.to_be_bytes()); let iter = db .remap_key_type::() .prefix_iter(self.rtxn, &key_buffer)? .remap_key_type::(); for result in iter { let ((_, _, normalized_value), original_value) = result?; let (_, count) = normalized_distribution .entry(normalized_value) .or_insert_with(|| (original_value, 0)); *count += 1; if normalized_distribution.len() == self.max_values_per_facet { break 'outer; } } } let iter = normalized_distribution .into_iter() .map(|(_normalized, (original, count))| (original.to_string(), count)); distribution.extend(iter); } } Ok(()) } /// There is too much documents, we use the facet levels to move throught /// the facet values, to find the candidates and values associated. fn facet_numbers_distribution_from_facet_levels( &self, field_id: FieldId, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { facet_distribution_iter::iterate_over_facet_distribution( self.rtxn, self.index.facet_id_f64_docids.remap_key_type::>(), field_id, candidates, |facet_key, nbr_docids, _| { let facet_key = OrderedF64Codec::bytes_decode(facet_key).unwrap(); distribution.insert(facet_key.to_string(), nbr_docids); if distribution.len() == self.max_values_per_facet { Ok(ControlFlow::Break(())) } else { Ok(ControlFlow::Continue(())) } }, ) } fn facet_strings_distribution_from_facet_levels( &self, field_id: FieldId, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { facet_distribution_iter::iterate_over_facet_distribution( self.rtxn, self.index.facet_id_string_docids.remap_key_type::>(), field_id, candidates, |facet_key, nbr_docids, any_docid| { let facet_key = StrRefCodec::bytes_decode(facet_key).unwrap(); let key: (FieldId, _, &str) = (field_id, any_docid, facet_key); let original_string = self .index .field_id_docid_facet_strings .get(self.rtxn, &key)? .unwrap() .to_owned(); distribution.insert(original_string, nbr_docids); if distribution.len() == self.max_values_per_facet { Ok(ControlFlow::Break(())) } else { Ok(ControlFlow::Continue(())) } }, ) } /// Placeholder search, a.k.a. no candidates were specified. We iterate throught the /// facet values one by one and iterate on the facet level 0 for numbers. fn facet_values_from_raw_facet_database( &self, field_id: FieldId, ) -> heed::Result> { let mut distribution = BTreeMap::new(); let db = self.index.facet_id_f64_docids; let mut prefix = vec![]; prefix.extend_from_slice(&field_id.to_be_bytes()); prefix.push(0); // read values from level 0 only let iter = db .as_polymorph() .prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())? .remap_types::, FacetGroupValueCodec>(); for result in iter { let (key, value) = result?; distribution.insert(key.left_bound.to_string(), value.bitmap.len()); if distribution.len() == self.max_values_per_facet { break; } } let iter = self .index .facet_id_string_docids .as_polymorph() .prefix_iter::<_, ByteSlice, ByteSlice>(self.rtxn, prefix.as_slice())? .remap_types::, FacetGroupValueCodec>(); for result in iter { let (key, value) = result?; let docid = value.bitmap.iter().next().unwrap(); let key: (FieldId, _, &'a str) = (field_id, docid, key.left_bound); let original_string = self.index.field_id_docid_facet_strings.get(self.rtxn, &key)?.unwrap().to_owned(); distribution.insert(original_string, value.bitmap.len()); if distribution.len() == self.max_values_per_facet { break; } } Ok(distribution) } fn facet_values(&self, field_id: FieldId) -> heed::Result> { use FacetType::{Number, String}; match self.candidates { Some(ref candidates) => { // Classic search, candidates were specified, we must return facet values only related // to those candidates. We also enter here for facet strings for performance reasons. let mut distribution = BTreeMap::new(); if candidates.len() <= CANDIDATES_THRESHOLD { self.facet_distribution_from_documents( field_id, Number, candidates, &mut distribution, )?; self.facet_distribution_from_documents( field_id, String, candidates, &mut distribution, )?; } else { self.facet_numbers_distribution_from_facet_levels( field_id, candidates, &mut distribution, )?; self.facet_strings_distribution_from_facet_levels( field_id, candidates, &mut distribution, )?; } Ok(distribution) } None => self.facet_values_from_raw_facet_database(field_id), } } pub fn execute(&self) -> Result>> { let fields_ids_map = self.index.fields_ids_map(self.rtxn)?; let filterable_fields = self.index.filterable_fields(self.rtxn)?; let fields = match self.facets { Some(ref facets) => { let invalid_fields: HashSet<_> = facets .iter() .filter(|facet| !crate::is_faceted(facet, &filterable_fields)) .collect(); if !invalid_fields.is_empty() { return Err(UserError::InvalidFacetsDistribution { invalid_facets_name: invalid_fields.into_iter().cloned().collect(), } .into()); } else { facets.clone() } } None => filterable_fields, }; let mut distribution = BTreeMap::new(); for (fid, name) in fields_ids_map.iter() { if crate::is_faceted(name, &fields) { let values = self.facet_values(fid)?; distribution.insert(name.to_string(), values); } } Ok(distribution) } } impl fmt::Debug for FacetDistribution<'_> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let FacetDistribution { facets, candidates, max_values_per_facet, rtxn: _, index: _ } = self; f.debug_struct("FacetDistribution") .field("facets", facets) .field("candidates", candidates) .field("max_values_per_facet", max_values_per_facet) .finish() } } #[cfg(test)] mod tests { use big_s::S; use maplit::hashset; use crate::{ documents::documents_batch_reader_from_objects, index::tests::TempIndex, milli_snap, FacetDistribution, }; #[test] fn few_candidates_few_facet_values() { // All the tests here avoid using the code in `facet_distribution_iter` because there aren't // enough candidates. let mut index = TempIndex::new(); index.index_documents_config.autogenerate_docids = true; index .update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") })) .unwrap(); let documents = documents!([ { "colour": "Blue" }, { "colour": " blue" }, { "colour": "RED" } ]); index.add_documents(documents).unwrap(); let txn = index.read_txn().unwrap(); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates([0, 1, 2].iter().copied().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2, "RED": 1}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates([1, 2].iter().copied().collect()) .execute() .unwrap(); // I think it would be fine if " blue" was "Blue" instead. // We just need to get any non-normalised string I think, even if it's not in // the candidates milli_snap!(format!("{map:?}"), @r###"{"colour": {" blue": 1, "RED": 1}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates([2].iter().copied().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"RED": 1}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates([0, 1, 2].iter().copied().collect()) .max_values_per_facet(1) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 1}}"###); } #[test] fn many_candidates_few_facet_values() { let mut index = TempIndex::new_with_map_size(4096 * 10_000); index.index_documents_config.autogenerate_docids = true; index .update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") })) .unwrap(); let facet_values = ["Red", "RED", " red ", "Blue", "BLUE"]; let mut documents = vec![]; for i in 0..10_000 { let document = serde_json::json!({ "colour": facet_values[i % 5], }) .as_object() .unwrap() .clone(); documents.push(document); } let documents = documents_batch_reader_from_objects(documents); index.add_documents(documents).unwrap(); let txn = index.read_txn().unwrap(); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .max_values_per_facet(1) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..10_000).into_iter().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 4000, "Red": 6000}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..5_000).into_iter().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..5_000).into_iter().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000, "Red": 3000}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..5_000).into_iter().collect()) .max_values_per_facet(1) .execute() .unwrap(); milli_snap!(format!("{map:?}"), @r###"{"colour": {"Blue": 2000}}"###); } #[test] fn many_candidates_many_facet_values() { let mut index = TempIndex::new_with_map_size(4096 * 10_000); index.index_documents_config.autogenerate_docids = true; index .update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") })) .unwrap(); let facet_values = (0..1000).into_iter().map(|x| format!("{x:x}")).collect::>(); let mut documents = vec![]; for i in 0..10_000 { let document = serde_json::json!({ "colour": facet_values[i % 1000], }) .as_object() .unwrap() .clone(); documents.push(document); } let documents = documents_batch_reader_from_objects(documents); index.add_documents(documents).unwrap(); let txn = index.read_txn().unwrap(); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .execute() .unwrap(); milli_snap!(format!("{map:?}"), "no_candidates", @"ac9229ed5964d893af96a7076e2f8af5"); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .max_values_per_facet(2) .execute() .unwrap(); milli_snap!(format!("{map:?}"), "no_candidates_with_max_2", @r###"{"colour": {"0": 10, "1": 10}}"###); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..10_000).into_iter().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), "candidates_0_10_000", @"ac9229ed5964d893af96a7076e2f8af5"); let map = FacetDistribution::new(&txn, &index) .facets(std::iter::once("colour")) .candidates((0..5_000).into_iter().collect()) .execute() .unwrap(); milli_snap!(format!("{map:?}"), "candidates_0_5_000", @"825f23a4090d05756f46176987b7d992"); } }