use std::borrow::Cow; use std::collections::hash_map::{Entry, HashMap}; use std::fmt; use std::mem::take; use std::result::Result as StdResult; use std::str::Utf8Error; use std::time::Instant; use distinct::{Distinct, DocIter, FacetDistinct, NoopDistinct}; use fst::{IntoStreamer, Streamer}; use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA}; use log::debug; use meilisearch_tokenizer::{Analyzer, AnalyzerConfig}; use once_cell::sync::Lazy; use roaring::bitmap::RoaringBitmap; pub(crate) use self::facet::ParserRule; pub use self::facet::{FacetDistribution, FacetNumberIter, FilterCondition, Operator}; pub use self::matching_words::MatchingWords; use self::query_tree::QueryTreeBuilder; use crate::criterion::AscDesc; use crate::search::criteria::r#final::{Final, FinalResult}; use crate::{DocumentId, Index, Result}; // Building these factories is not free. static LEVDIST0: Lazy = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST1: Lazy = Lazy::new(|| LevBuilder::new(1, true)); static LEVDIST2: Lazy = Lazy::new(|| LevBuilder::new(2, true)); mod criteria; mod distinct; mod facet; mod matching_words; mod query_tree; pub struct Search<'a> { query: Option, filter: Option, offset: usize, limit: usize, sort_criteria: Option>, optional_words: bool, authorize_typos: bool, words_limit: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { Search { query: None, filter: None, offset: 0, limit: 20, sort_criteria: None, optional_words: true, authorize_typos: true, words_limit: 10, rtxn, index, } } pub fn query(&mut self, query: impl Into) -> &mut Search<'a> { self.query = Some(query.into()); self } pub fn offset(&mut self, offset: usize) -> &mut Search<'a> { self.offset = offset; self } pub fn limit(&mut self, limit: usize) -> &mut Search<'a> { self.limit = limit; self } pub fn sort_criteria(&mut self, criteria: Vec) -> &mut Search<'a> { self.sort_criteria = Some(criteria); self } pub fn optional_words(&mut self, value: bool) -> &mut Search<'a> { self.optional_words = value; self } pub fn authorize_typos(&mut self, value: bool) -> &mut Search<'a> { self.authorize_typos = value; self } pub fn words_limit(&mut self, value: usize) -> &mut Search<'a> { self.words_limit = value; self } pub fn filter(&mut self, condition: FilterCondition) -> &mut Search<'a> { self.filter = Some(condition); self } pub fn execute(&self) -> Result { // We create the query tree by spliting the query into tokens. let before = Instant::now(); let (query_tree, primitive_query) = match self.query.as_ref() { Some(query) => { let mut builder = QueryTreeBuilder::new(self.rtxn, self.index); builder.optional_words(self.optional_words); builder.authorize_typos(self.authorize_typos); builder.words_limit(self.words_limit); // We make sure that the analyzer is aware of the stop words // this ensures that the query builder is able to properly remove them. let mut config = AnalyzerConfig::default(); let stop_words = self.index.stop_words(self.rtxn)?; if let Some(ref stop_words) = stop_words { config.stop_words(stop_words); } let analyzer = Analyzer::new(config); let result = analyzer.analyze(query); let tokens = result.tokens(); builder.build(tokens)?.map_or((None, None), |(qt, pq)| (Some(qt), Some(pq))) } None => (None, None), }; debug!("query tree: {:?} took {:.02?}", query_tree, before.elapsed()); // We create the original candidates with the facet conditions results. let before = Instant::now(); let filtered_candidates = match &self.filter { Some(condition) => Some(condition.evaluate(self.rtxn, self.index)?), None => None, }; debug!("facet candidates: {:?} took {:.02?}", filtered_candidates, before.elapsed()); let matching_words = match query_tree.as_ref() { Some(query_tree) => MatchingWords::from_query_tree(&query_tree), None => MatchingWords::default(), }; let criteria_builder = criteria::CriteriaBuilder::new(self.rtxn, self.index)?; let sort_criteria = self.sort_criteria.clone(); let criteria = criteria_builder.build( query_tree, primitive_query, filtered_candidates, sort_criteria, )?; match self.index.distinct_field(self.rtxn)? { None => self.perform_sort(NoopDistinct, matching_words, criteria), Some(name) => { let field_ids_map = self.index.fields_ids_map(self.rtxn)?; match field_ids_map.id(name) { Some(fid) => { let distinct = FacetDistinct::new(fid, self.index, self.rtxn); self.perform_sort(distinct, matching_words, criteria) } None => Ok(SearchResult::default()), } } } } fn perform_sort( &self, mut distinct: D, matching_words: MatchingWords, mut criteria: Final, ) -> Result { let mut offset = self.offset; let mut initial_candidates = RoaringBitmap::new(); let mut excluded_candidates = RoaringBitmap::new(); let mut documents_ids = Vec::new(); while let Some(FinalResult { candidates, bucket_candidates, .. }) = criteria.next(&excluded_candidates)? { debug!("Number of candidates found {}", candidates.len()); let excluded = take(&mut excluded_candidates); let mut candidates = distinct.distinct(candidates, excluded); initial_candidates |= bucket_candidates; if offset != 0 { let discarded = candidates.by_ref().take(offset).count(); offset = offset.saturating_sub(discarded); } for candidate in candidates.by_ref().take(self.limit - documents_ids.len()) { documents_ids.push(candidate?); } if documents_ids.len() == self.limit { break; } excluded_candidates = candidates.into_excluded(); } Ok(SearchResult { matching_words, candidates: initial_candidates, documents_ids }) } } impl fmt::Debug for Search<'_> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let Search { query, filter, offset, limit, sort_criteria, optional_words, authorize_typos, words_limit, rtxn: _, index: _, } = self; f.debug_struct("Search") .field("query", query) .field("filter", filter) .field("offset", offset) .field("limit", limit) .field("sort_criteria", sort_criteria) .field("optional_words", optional_words) .field("authorize_typos", authorize_typos) .field("words_limit", words_limit) .finish() } } #[derive(Default)] pub struct SearchResult { pub matching_words: MatchingWords, pub candidates: RoaringBitmap, // TODO those documents ids should be associated with their criteria scores. pub documents_ids: Vec, } pub type WordDerivationsCache = HashMap<(String, bool, u8), Vec<(String, u8)>>; pub fn word_derivations<'c>( word: &str, is_prefix: bool, max_typo: u8, fst: &fst::Set>, cache: &'c mut WordDerivationsCache, ) -> StdResult<&'c [(String, u8)], Utf8Error> { match cache.entry((word.to_string(), is_prefix, max_typo)) { Entry::Occupied(entry) => Ok(entry.into_mut()), Entry::Vacant(entry) => { let mut derived_words = Vec::new(); let dfa = build_dfa(word, max_typo, is_prefix); let mut stream = fst.search_with_state(&dfa).into_stream(); while let Some((word, state)) = stream.next() { let word = std::str::from_utf8(word)?; let distance = dfa.distance(state); derived_words.push((word.to_string(), distance.to_u8())); } Ok(entry.insert(derived_words)) } } } pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA { let lev = match typos { 0 => &LEVDIST0, 1 => &LEVDIST1, _ => &LEVDIST2, }; if is_prefix { lev.build_prefix_dfa(word) } else { lev.build_dfa(word) } }