use std::path::PathBuf; use std::{str, io}; use anyhow::Context; use heed::EnvOpenOptions; use milli::Index; use structopt::StructOpt; use Command::*; #[cfg(target_os = "linux")] #[global_allocator] static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc; const MAIN_DB_NAME: &str = "main"; const WORD_DOCIDS_DB_NAME: &str = "word-docids"; const DOCID_WORD_POSITIONS_DB_NAME: &str = "docid-word-positions"; const WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-pair-proximity-docids"; const DOCUMENTS_DB_NAME: &str = "documents"; const DATABASE_NAMES: &[&str] = &[ MAIN_DB_NAME, WORD_DOCIDS_DB_NAME, DOCID_WORD_POSITIONS_DB_NAME, WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME, DOCUMENTS_DB_NAME, ]; #[derive(Debug, StructOpt)] #[structopt(name = "milli-info", about = "A stats crawler for milli.")] struct Opt { /// The database path where the database is located. /// It is created if it doesn't already exist. #[structopt(long = "db", parse(from_os_str))] database: PathBuf, /// The maximum size the database can take on disk. It is recommended to specify /// the whole disk space (value must be a multiple of a page size). #[structopt(long = "db-size", default_value = "107374182400")] // 100 GB database_size: usize, /// Verbose mode (-v, -vv, -vvv, etc.) #[structopt(short, long, parse(from_occurrences))] verbose: usize, #[structopt(subcommand)] command: Command, } #[derive(Debug, StructOpt)] enum Command { /// Outputs a CSV of the most frequent words of this index. /// /// `word` are displayed and ordered by frequency. /// `document_frequency` defines the number of documents which contains the word. MostCommonWords { /// The maximum number of frequencies to return. #[structopt(default_value = "10")] limit: usize, }, /// Outputs a CSV with the biggest entries of the database. BiggestValues { /// The maximum number of sizes to return. #[structopt(default_value = "10")] limit: usize, }, /// Outputs a CSV with the documents ids where the given words appears. WordsDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// The words to display the documents ids of. words: Vec, }, /// Outputs the total size of all the docid-word-positions keys and values. TotalDocidWordPositionsSize, /// Outputs the average number of *different* words by document. AverageNumberOfWordsByDoc, /// Outputs the average number of positions for each document words. AverageNumberOfPositionsByWord, /// Outputs some statistics about the words pairs proximities /// (median, quartiles, percentiles, minimum, maximum, averge). WordPairProximityStats, /// Outputs the size in bytes of the specified database. SizeOfDatabase { #[structopt(possible_values = DATABASE_NAMES)] database: String, }, /// Outputs a CSV with the proximities for the two specidied words and /// the documents ids where these relations appears. /// /// `word1`, `word2` defines the word pair specified *in this specific order*. /// `proximity` defines the proximity between the two specified words. /// `documents_ids` defines the documents ids where the relation appears. WordPairProximitiesDocids { /// Display the whole documents ids in details. #[structopt(long)] full_display: bool, /// First word of the word pair. word1: String, /// Second word of the word pair. word2: String, }, /// Outputs the words FST to disk. /// /// One can use the FST binary helper to dissect and analyze it, /// you can install it using `cargo install fst-bin`. ExportWordsFst { /// The path where the FST will be written. #[structopt(short, long, default_value = "words.fst")] output: PathBuf, }, } fn main() -> anyhow::Result<()> { let opt = Opt::from_args(); stderrlog::new() .verbosity(opt.verbose) .show_level(false) .timestamp(stderrlog::Timestamp::Off) .init()?; let env = EnvOpenOptions::new() .map_size(opt.database_size) .max_dbs(10) .open(&opt.database)?; // Open the LMDB database. let index = Index::new(&env)?; let rtxn = env.read_txn()?; match opt.command { MostCommonWords { limit } => most_common_words(&index, &rtxn, limit), BiggestValues { limit } => biggest_value_sizes(&index, &rtxn, limit), WordsDocids { full_display, words } => words_docids(&index, &rtxn, !full_display, words), TotalDocidWordPositionsSize => total_docid_word_positions_size(&index, &rtxn), AverageNumberOfWordsByDoc => average_number_of_words_by_doc(&index, &rtxn), AverageNumberOfPositionsByWord => { average_number_of_positions_by_word(&index, &rtxn) }, SizeOfDatabase { database } => size_of_database(&index, &rtxn, &database), WordPairProximityStats => word_pair_proximity_stats(&index, &rtxn), WordPairProximitiesDocids { full_display, word1, word2 } => { word_pair_proximities_docids(&index, &rtxn, !full_display, word1, word2) }, ExportWordsFst { output } => export_words_fst(&index, &rtxn, output), } } fn most_common_words(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> { use std::collections::BinaryHeap; use std::cmp::Reverse; let mut heap = BinaryHeap::with_capacity(limit + 1); for result in index.word_docids.iter(rtxn)? { if limit == 0 { break } let (word, docids) = result?; heap.push((Reverse(docids.len()), word)); if heap.len() > limit { heap.pop(); } } let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word", "document_frequency"])?; for (Reverse(document_frequency), word) in heap.into_sorted_vec() { wtr.write_record(&[word, &document_frequency.to_string()])?; } Ok(wtr.flush()?) } fn biggest_value_sizes(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> { use std::cmp::Reverse; use std::collections::BinaryHeap; use heed::types::{Str, ByteSlice}; use milli::heed_codec::BEU32StrCodec; let main_name = "main"; let word_docids_name = "word_docids"; let docid_word_positions_name = "docid_word_positions"; let mut heap = BinaryHeap::with_capacity(limit + 1); if limit > 0 { if let Some(fst) = index.fst(rtxn)? { heap.push(Reverse((fst.as_fst().as_bytes().len(), format!("words-fst"), main_name))); if heap.len() > limit { heap.pop(); } } if let Some(documents) = index.main.get::<_, Str, ByteSlice>(rtxn, "documents")? { heap.push(Reverse((documents.len(), format!("documents"), main_name))); if heap.len() > limit { heap.pop(); } } if let Some(documents_ids) = index.main.get::<_, Str, ByteSlice>(rtxn, "documents-ids")? { heap.push(Reverse((documents_ids.len(), format!("documents-ids"), main_name))); if heap.len() > limit { heap.pop(); } } for result in index.word_docids.as_polymorph().iter::<_, Str, ByteSlice>(rtxn)? { let (word, value) = result?; heap.push(Reverse((value.len(), word.to_string(), word_docids_name))); if heap.len() > limit { heap.pop(); } } for result in index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, ByteSlice>(rtxn)? { let ((docid, word), value) = result?; let key = format!("{} {}", docid, word); heap.push(Reverse((value.len(), key, docid_word_positions_name))); if heap.len() > limit { heap.pop(); } } } let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["database_name", "key_name", "size"])?; for Reverse((size, key_name, database_name)) in heap.into_sorted_vec() { wtr.write_record(&[database_name.to_string(), key_name, size.to_string()])?; } Ok(wtr.flush()?) } fn words_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, words: Vec) -> anyhow::Result<()> { let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word", "documents_ids"])?; for word in words { if let Some(docids) = index.word_docids.get(rtxn, &word)? { let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[word, docids])?; } } Ok(wtr.flush()?) } fn export_words_fst(index: &Index, rtxn: &heed::RoTxn, output: PathBuf) -> anyhow::Result<()> { use std::fs::File; use std::io::Write as _; let mut output = File::create(&output) .with_context(|| format!("failed to create {} file", output.display()))?; match index.fst(rtxn)? { Some(fst) => output.write_all(fst.as_fst().as_bytes())?, None => { let fst = fst::Set::default(); output.write_all(fst.as_fst().as_bytes())?; }, } Ok(()) } fn total_docid_word_positions_size(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::ByteSlice; let mut total_key_size = 0; let mut total_val_size = 0; let mut count = 0; let iter = index.docid_word_positions.as_polymorph().iter::<_, ByteSlice, ByteSlice>(rtxn)?; for result in iter { let (key, val) = result?; total_key_size += key.len(); total_val_size += val.len(); count += 1; } println!("number of keys: {}", count); println!("total key size: {}", total_key_size); println!("total value size: {}", total_val_size); Ok(()) } fn average_number_of_words_by_doc(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::DecodeIgnore; use milli::{DocumentId, BEU32StrCodec}; let mut words_counts = Vec::new(); let mut count = 0; let mut prev = None as Option<(DocumentId, u32)>; let iter = index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, DecodeIgnore>(rtxn)?; for result in iter { let ((docid, _word), ()) = result?; match prev.as_mut() { Some((prev_docid, prev_count)) if docid == *prev_docid => { *prev_count += 1; }, Some((prev_docid, prev_count)) => { words_counts.push(*prev_count); *prev_docid = docid; *prev_count = 0; count += 1; }, None => prev = Some((docid, 1)), } } if let Some((_, prev_count)) = prev.take() { words_counts.push(prev_count); count += 1; } let words_count = words_counts.into_iter().map(|c| c as usize).sum::() as f64; let count = count as f64; println!("average number of different words by document: {}", words_count / count); Ok(()) } fn average_number_of_positions_by_word(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::DecodeIgnore; use milli::BoRoaringBitmapCodec; let mut values_length = Vec::new(); let mut count = 0; let db = index.docid_word_positions.as_polymorph(); for result in db.iter::<_, DecodeIgnore, BoRoaringBitmapCodec>(rtxn)? { let ((), val) = result?; values_length.push(val.len() as u32); count += 1; } let values_length_sum = values_length.into_iter().map(|c| c as usize).sum::() as f64; let count = count as f64; println!("average number of positions by word: {}", values_length_sum / count); Ok(()) } fn size_of_database(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Result<()> { use heed::types::ByteSlice; let database = match name { MAIN_DB_NAME => &index.main, WORD_DOCIDS_DB_NAME => index.word_docids.as_polymorph(), DOCID_WORD_POSITIONS_DB_NAME => index.docid_word_positions.as_polymorph(), WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_pair_proximity_docids.as_polymorph(), DOCUMENTS_DB_NAME => index.documents.as_polymorph(), otherwise => anyhow::bail!("unknown database {:?}", otherwise), }; let mut key_size: u64 = 0; let mut val_size: u64 = 0; for result in database.iter::<_, ByteSlice, ByteSlice>(rtxn)? { let (k, v) = result?; key_size += k.len() as u64; val_size += v.len() as u64; } eprintln!("The {} database weigh {} bytes in terms of keys and {} bytes in terms of values.", name, key_size, val_size, ); Ok(()) } fn word_pair_proximity_stats(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> { use heed::types::DecodeIgnore; use milli::RoaringBitmapCodec; let mut values_length = Vec::new(); let db = index.word_pair_proximity_docids.as_polymorph(); for result in db.iter::<_, DecodeIgnore, RoaringBitmapCodec>(rtxn)? { let ((), val) = result?; values_length.push(val.len() as u32); } values_length.sort_unstable(); let median = values_length.get(values_length.len() / 2).unwrap_or(&0); let first_quartile = values_length.get(values_length.len() / 4).unwrap_or(&0); let third_quartile = values_length.get(values_length.len() / 4 * 3).unwrap_or(&0); let ninety_percentile = values_length.get(values_length.len() / 100 * 90).unwrap_or(&0); let ninety_five_percentile = values_length.get(values_length.len() / 100 * 95).unwrap_or(&0); let ninety_nine_percentile = values_length.get(values_length.len() / 100 * 99).unwrap_or(&0); let minimum = values_length.first().unwrap_or(&0); let maximum = values_length.last().unwrap_or(&0); let count = values_length.len(); let sum = values_length.iter().map(|l| *l as u64).sum::(); println!("words pairs proximities stats on the lengths"); println!("\tnumber of proximity pairs: {}", count); println!("\tfirst quartile: {}", first_quartile); println!("\tmedian: {}", median); println!("\tthird quartile: {}", third_quartile); println!("\t90th percentile: {}", ninety_percentile); println!("\t95th percentile: {}", ninety_five_percentile); println!("\t99th percentile: {}", ninety_nine_percentile); println!("\tminimum: {}", minimum); println!("\tmaximum: {}", maximum); println!("\taverage: {}", sum as f64 / count as f64); Ok(()) } fn word_pair_proximities_docids( index: &Index, rtxn: &heed::RoTxn, debug: bool, word1: String, word2: String, ) -> anyhow::Result<()> { use heed::types::ByteSlice; use milli::RoaringBitmapCodec; let stdout = io::stdout(); let mut wtr = csv::Writer::from_writer(stdout.lock()); wtr.write_record(&["word1", "word2", "proximity", "documents_ids"])?; // Create the prefix key with only the pair of words. let mut prefix = Vec::with_capacity(word1.len() + word2.len() + 1); prefix.extend_from_slice(word1.as_bytes()); prefix.push(0); prefix.extend_from_slice(word2.as_bytes()); let db = index.word_pair_proximity_docids.as_polymorph(); let iter = db.prefix_iter::<_, ByteSlice, RoaringBitmapCodec>(rtxn, &prefix)?; for result in iter { let (key, docids) = result?; // Skip keys that are longer than the requested one, // a longer key means that the second word is a prefix of the request word. if key.len() != prefix.len() + 1 { continue; } let proximity = key.last().unwrap(); let docids = if debug { format!("{:?}", docids) } else { format!("{:?}", docids.iter().collect::>()) }; wtr.write_record(&[&word1, &word2, &proximity.to_string(), &docids])?; } Ok(wtr.flush()?) }