use std::borrow::Cow; use std::collections::hash_map::{HashMap, Entry}; use std::fmt; use std::str::Utf8Error; use std::time::Instant; use fst::{IntoStreamer, Streamer, Set}; use levenshtein_automata::{DFA, LevenshteinAutomatonBuilder as LevBuilder}; use log::debug; use meilisearch_tokenizer::{AnalyzerConfig, Analyzer}; use once_cell::sync::Lazy; use roaring::bitmap::RoaringBitmap; use crate::search::criteria::fetcher::FetcherResult; use crate::{Index, DocumentId}; pub use self::facet::FacetIter; pub use self::facet::{FacetCondition, FacetDistribution, FacetNumberOperator, FacetStringOperator}; pub use self::query_tree::MatchingWords; use self::query_tree::QueryTreeBuilder; // Building these factories is not free. static LEVDIST0: Lazy = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST1: Lazy = Lazy::new(|| LevBuilder::new(1, true)); static LEVDIST2: Lazy = Lazy::new(|| LevBuilder::new(2, true)); mod facet; mod query_tree; mod criteria; pub struct Search<'a> { query: Option, facet_condition: Option, offset: usize, limit: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index } } pub fn query(&mut self, query: impl Into) -> &mut Search<'a> { self.query = Some(query.into()); self } pub fn offset(&mut self, offset: usize) -> &mut Search<'a> { self.offset = offset; self } pub fn limit(&mut self, limit: usize) -> &mut Search<'a> { self.limit = limit; self } pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> { self.facet_condition = Some(condition); self } pub fn execute(&self) -> anyhow::Result { // We create the query tree by spliting the query into tokens. let before = Instant::now(); let query_tree = match self.query.as_ref() { Some(query) => { let builder = QueryTreeBuilder::new(self.rtxn, self.index); let stop_words = &Set::default(); let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(stop_words)); let result = analyzer.analyze(query); let tokens = result.tokens(); builder.build(tokens)? }, None => None, }; debug!("query tree: {:?} took {:.02?}", query_tree, before.elapsed()); // We create the original candidates with the facet conditions results. let before = Instant::now(); let facet_candidates = match &self.facet_condition { Some(condition) => Some(condition.evaluate(self.rtxn, self.index)?), None => None, }; debug!("facet candidates: {:?} took {:.02?}", facet_candidates, before.elapsed()); let matching_words = match query_tree.as_ref() { Some(query_tree) => MatchingWords::from_query_tree(&query_tree), None => MatchingWords::default(), }; let criteria_builder = criteria::CriteriaBuilder::new(self.rtxn, self.index)?; let mut criteria = criteria_builder.build(query_tree, facet_candidates)?; let mut offset = self.offset; let mut limit = self.limit; let mut documents_ids = Vec::new(); let mut initial_candidates = RoaringBitmap::new(); while let Some(FetcherResult { candidates, bucket_candidates, .. }) = criteria.next()? { debug!("Number of candidates found {}", candidates.len()); let mut len = candidates.len() as usize; let mut candidates = candidates.into_iter(); initial_candidates.union_with(&bucket_candidates); if offset != 0 { candidates.by_ref().skip(offset).for_each(drop); offset = offset.saturating_sub(len.min(offset)); len = len.saturating_sub(len.min(offset)); } if len != 0 { documents_ids.extend(candidates.take(limit)); limit = limit.saturating_sub(len.min(limit)); } if limit == 0 { break } } Ok(SearchResult { matching_words, candidates: initial_candidates, documents_ids }) } } impl fmt::Debug for Search<'_> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let Search { query, facet_condition, offset, limit, rtxn: _, index: _ } = self; f.debug_struct("Search") .field("query", query) .field("facet_condition", facet_condition) .field("offset", offset) .field("limit", limit) .finish() } } #[derive(Default)] pub struct SearchResult { pub matching_words: MatchingWords, pub candidates: RoaringBitmap, // TODO those documents ids should be associated with their criteria scores. pub documents_ids: Vec, } pub type WordDerivationsCache = HashMap<(String, bool, u8), Vec<(String, u8)>>; pub fn word_derivations<'c>( word: &str, is_prefix: bool, max_typo: u8, fst: &fst::Set>, cache: &'c mut WordDerivationsCache, ) -> Result<&'c [(String, u8)], Utf8Error> { match cache.entry((word.to_string(), is_prefix, max_typo)) { Entry::Occupied(entry) => Ok(entry.into_mut()), Entry::Vacant(entry) => { let mut derived_words = Vec::new(); let dfa = build_dfa(word, max_typo, is_prefix); let mut stream = fst.search_with_state(&dfa).into_stream(); while let Some((word, state)) = stream.next() { let word = std::str::from_utf8(word)?; let distance = dfa.distance(state); derived_words.push((word.to_string(), distance.to_u8())); } Ok(entry.insert(derived_words)) }, } } pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA { let lev = match typos { 0 => &LEVDIST0, 1 => &LEVDIST1, _ => &LEVDIST2, }; if is_prefix { lev.build_prefix_dfa(word) } else { lev.build_dfa(word) } }