use candle_core::Tensor; use candle_nn::VarBuilder; use candle_transformers::models::bert::{BertModel, Config, DTYPE}; // FIXME: currently we'll be using the hub to retrieve model, in the future we might want to embed it into Meilisearch itself use hf_hub::api::sync::Api; use hf_hub::{Repo, RepoType}; use tokenizers::{PaddingParams, Tokenizer}; pub use super::error::{EmbedError, Error, NewEmbedderError}; use super::{Embedding, Embeddings}; #[derive( Debug, Clone, Copy, Default, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize, deserr::Deserr, )] #[serde(deny_unknown_fields, rename_all = "camelCase")] #[deserr(rename_all = camelCase, deny_unknown_fields)] pub enum WeightSource { #[default] Safetensors, Pytorch, } #[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)] pub struct EmbedderOptions { pub model: String, pub revision: Option, pub weight_source: WeightSource, pub normalize_embeddings: bool, } impl EmbedderOptions { pub fn new() -> Self { Self { //model: "sentence-transformers/all-MiniLM-L6-v2".to_string(), model: "BAAI/bge-base-en-v1.5".to_string(), //revision: Some("refs/pr/21".to_string()), revision: None, //weight_source: Default::default(), weight_source: WeightSource::Pytorch, normalize_embeddings: true, } } } impl Default for EmbedderOptions { fn default() -> Self { Self::new() } } /// Perform embedding of documents and queries pub struct Embedder { model: BertModel, tokenizer: Tokenizer, options: EmbedderOptions, dimensions: usize, } impl std::fmt::Debug for Embedder { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.debug_struct("Embedder") .field("model", &self.options.model) .field("tokenizer", &self.tokenizer) .field("options", &self.options) .finish() } } impl Embedder { pub fn new(options: EmbedderOptions) -> std::result::Result { let device = candle_core::Device::Cpu; let repo = match options.revision.clone() { Some(revision) => Repo::with_revision(options.model.clone(), RepoType::Model, revision), None => Repo::model(options.model.clone()), }; let (config_filename, tokenizer_filename, weights_filename) = { let api = Api::new().map_err(NewEmbedderError::new_api_fail)?; let api = api.repo(repo); let config = api.get("config.json").map_err(NewEmbedderError::api_get)?; let tokenizer = api.get("tokenizer.json").map_err(NewEmbedderError::api_get)?; let weights = match options.weight_source { WeightSource::Pytorch => { api.get("pytorch_model.bin").map_err(NewEmbedderError::api_get)? } WeightSource::Safetensors => { api.get("model.safetensors").map_err(NewEmbedderError::api_get)? } }; (config, tokenizer, weights) }; let config = std::fs::read_to_string(&config_filename) .map_err(|inner| NewEmbedderError::open_config(config_filename.clone(), inner))?; let config: Config = serde_json::from_str(&config).map_err(|inner| { NewEmbedderError::deserialize_config(config, config_filename, inner) })?; let mut tokenizer = Tokenizer::from_file(&tokenizer_filename) .map_err(|inner| NewEmbedderError::open_tokenizer(tokenizer_filename, inner))?; let vb = match options.weight_source { WeightSource::Pytorch => VarBuilder::from_pth(&weights_filename, DTYPE, &device) .map_err(NewEmbedderError::pytorch_weight)?, WeightSource::Safetensors => unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device) .map_err(NewEmbedderError::safetensor_weight)? }, }; let model = BertModel::load(vb, &config).map_err(NewEmbedderError::load_model)?; if let Some(pp) = tokenizer.get_padding_mut() { pp.strategy = tokenizers::PaddingStrategy::BatchLongest } else { let pp = PaddingParams { strategy: tokenizers::PaddingStrategy::BatchLongest, ..Default::default() }; tokenizer.with_padding(Some(pp)); } let mut this = Self { model, tokenizer, options, dimensions: 0 }; let embeddings = this .embed(vec!["test".into()]) .map_err(NewEmbedderError::hf_could_not_determine_dimension)?; this.dimensions = embeddings.first().unwrap().dimension(); Ok(this) } pub fn embed( &self, mut texts: Vec, ) -> std::result::Result>, EmbedError> { let tokens = match texts.len() { 1 => vec![self .tokenizer .encode(texts.pop().unwrap(), true) .map_err(EmbedError::tokenize)?], _ => self.tokenizer.encode_batch(texts, true).map_err(EmbedError::tokenize)?, }; let token_ids = tokens .iter() .map(|tokens| { let tokens = tokens.get_ids().to_vec(); Tensor::new(tokens.as_slice(), &self.model.device).map_err(EmbedError::tensor_shape) }) .collect::, EmbedError>>()?; let token_ids = Tensor::stack(&token_ids, 0).map_err(EmbedError::tensor_shape)?; let token_type_ids = token_ids.zeros_like().map_err(EmbedError::tensor_shape)?; let embeddings = self.model.forward(&token_ids, &token_type_ids).map_err(EmbedError::model_forward)?; // Apply some avg-pooling by taking the mean embedding value for all tokens (including padding) let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3().map_err(EmbedError::tensor_shape)?; let embeddings = (embeddings.sum(1).map_err(EmbedError::tensor_value)? / (n_tokens as f64)) .map_err(EmbedError::tensor_shape)?; let embeddings: Tensor = if self.options.normalize_embeddings { normalize_l2(&embeddings).map_err(EmbedError::tensor_value)? } else { embeddings }; let embeddings: Vec = embeddings.to_vec2().map_err(EmbedError::tensor_shape)?; Ok(embeddings.into_iter().map(Embeddings::from_single_embedding).collect()) } pub fn embed_chunks( &self, text_chunks: Vec>, ) -> std::result::Result>>, EmbedError> { text_chunks.into_iter().map(|prompts| self.embed(prompts)).collect() } pub fn chunk_count_hint(&self) -> usize { 1 } pub fn prompt_count_in_chunk_hint(&self) -> usize { std::thread::available_parallelism().map(|x| x.get()).unwrap_or(8) } pub fn dimensions(&self) -> usize { self.dimensions } } fn normalize_l2(v: &Tensor) -> Result { v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?) }