use std::borrow::Cow; use std::collections::{HashMap, HashSet}; use std::fmt; use std::time::Instant; use anyhow::{bail, Context}; use fst::{IntoStreamer, Streamer, Set}; use levenshtein_automata::DFA; use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder; use log::debug; use meilisearch_tokenizer::{AnalyzerConfig, Analyzer}; use once_cell::sync::Lazy; use ordered_float::OrderedFloat; use roaring::bitmap::RoaringBitmap; use crate::facet::FacetType; use crate::heed_codec::facet::{FacetLevelValueF64Codec, FacetLevelValueI64Codec}; use crate::heed_codec::facet::{FieldDocIdFacetF64Codec, FieldDocIdFacetI64Codec}; use crate::mdfs::Mdfs; use crate::query_tokens::{query_tokens, QueryToken}; use crate::{Index, FieldId, DocumentId, Criterion}; pub use self::facet::{FacetCondition, FacetDistribution, FacetNumberOperator, FacetStringOperator}; pub use self::facet::{FacetIter}; // Building these factories is not free. static LEVDIST0: Lazy = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST1: Lazy = Lazy::new(|| LevBuilder::new(1, true)); static LEVDIST2: Lazy = Lazy::new(|| LevBuilder::new(2, true)); mod facet; pub struct Search<'a> { query: Option, facet_condition: Option, offset: usize, limit: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { Search { query: None, facet_condition: None, offset: 0, limit: 20, rtxn, index } } pub fn query(&mut self, query: impl Into) -> &mut Search<'a> { self.query = Some(query.into()); self } pub fn offset(&mut self, offset: usize) -> &mut Search<'a> { self.offset = offset; self } pub fn limit(&mut self, limit: usize) -> &mut Search<'a> { self.limit = limit; self } pub fn facet_condition(&mut self, condition: FacetCondition) -> &mut Search<'a> { self.facet_condition = Some(condition); self } /// Extracts the query words from the query string and returns the DFAs accordingly. /// TODO introduce settings for the number of typos regarding the words lengths. fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> { let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2); let stop_words = Set::default(); let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(&stop_words)); let analyzed = analyzer.analyze(query); let tokens = analyzed.tokens(); let words: Vec<_> = query_tokens(tokens).collect(); let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace); let number_of_words = words.len(); words.into_iter().enumerate().map(|(i, word)| { let (word, quoted) = match word { QueryToken::Free(token) => (token.text().to_string(), token.text().len() <= 3), QueryToken::Quoted(token) => (token.text().to_string(), true), }; let is_last = i + 1 == number_of_words; let is_prefix = is_last && !ends_with_whitespace && !quoted; let lev = match word.len() { 0..=4 => if quoted { lev0 } else { lev0 }, 5..=8 => if quoted { lev0 } else { lev1 }, _ => if quoted { lev0 } else { lev2 }, }; let dfa = if is_prefix { lev.build_prefix_dfa(&word) } else { lev.build_dfa(&word) }; (word, is_prefix, dfa) }) .collect() } /// Fetch the words from the given FST related to the given DFAs along with /// the associated documents ids. fn fetch_words_docids( &self, fst: &fst::Set>, dfas: Vec<(String, bool, DFA)>, ) -> anyhow::Result, RoaringBitmap)>> { // A Vec storing all the derived words from the original query words, associated // with the distance from the original word and the docids where the words appears. let mut derived_words = Vec::<(HashMap::, RoaringBitmap)>::with_capacity(dfas.len()); for (_word, _is_prefix, dfa) in dfas { let mut acc_derived_words = HashMap::new(); let mut unions_docids = RoaringBitmap::new(); let mut stream = fst.search_with_state(&dfa).into_stream(); while let Some((word, state)) = stream.next() { let word = std::str::from_utf8(word)?; let docids = self.index.word_docids.get(self.rtxn, word)?.unwrap(); let distance = dfa.distance(state); unions_docids.union_with(&docids); acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids)); } derived_words.push((acc_derived_words, unions_docids)); } Ok(derived_words) } /// Returns the set of docids that contains all of the query words. fn compute_candidates( derived_words: &[(HashMap, RoaringBitmap)], ) -> RoaringBitmap { // We sort the derived words by inverse popularity, this way intersections are faster. let mut derived_words: Vec<_> = derived_words.iter().collect(); derived_words.sort_unstable_by_key(|(_, docids)| docids.len()); // we do a union between all the docids of each of the derived words, // we got N unions (the number of original query words), we then intersect them. let mut candidates = RoaringBitmap::new(); for (i, (_, union_docids)) in derived_words.iter().enumerate() { if i == 0 { candidates = union_docids.clone(); } else { candidates.intersect_with(&union_docids); } } candidates } fn facet_ordered( &self, field_id: FieldId, facet_type: FacetType, ascending: bool, mut documents_ids: RoaringBitmap, limit: usize, ) -> anyhow::Result> { let mut output: Vec<_> = match facet_type { FacetType::Float => { if documents_ids.len() <= 1000 { let db = self.index.field_id_docid_facet_values.remap_key_type::(); let mut docids_values = Vec::with_capacity(documents_ids.len() as usize); for docid in documents_ids.iter() { let left = (field_id, docid, f64::MIN); let right = (field_id, docid, f64::MAX); let mut iter = db.range(self.rtxn, &(left..=right))?; let entry = if ascending { iter.next() } else { iter.last() }; if let Some(((_, _, value), ())) = entry.transpose()? { docids_values.push((docid, OrderedFloat(value))); } } docids_values.sort_unstable_by_key(|(_, value)| *value); let iter = docids_values.into_iter().map(|(id, _)| id); if ascending { iter.take(limit).collect() } else { iter.rev().take(limit).collect() } } else { let facet_fn = if ascending { FacetIter::::new } else { FacetIter::::new_reverse }; let mut limit_tmp = limit; let mut output = Vec::new(); for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? { let (_val, docids) = result?; limit_tmp = limit_tmp.saturating_sub(docids.len() as usize); output.push(docids); if limit_tmp == 0 { break } } output.into_iter().flatten().take(limit).collect() } }, FacetType::Integer => { if documents_ids.len() <= 1000 { let db = self.index.field_id_docid_facet_values.remap_key_type::(); let mut docids_values = Vec::with_capacity(documents_ids.len() as usize); for docid in documents_ids.iter() { let left = (field_id, docid, i64::MIN); let right = (field_id, docid, i64::MAX); let mut iter = db.range(self.rtxn, &(left..=right))?; let entry = if ascending { iter.next() } else { iter.last() }; if let Some(((_, _, value), ())) = entry.transpose()? { docids_values.push((docid, value)); } } docids_values.sort_unstable_by_key(|(_, value)| *value); let iter = docids_values.into_iter().map(|(id, _)| id); if ascending { iter.take(limit).collect() } else { iter.rev().take(limit).collect() } } else { let facet_fn = if ascending { FacetIter::::new } else { FacetIter::::new_reverse }; let mut limit_tmp = limit; let mut output = Vec::new(); for result in facet_fn(self.rtxn, self.index, field_id, documents_ids.clone())? { let (_val, docids) = result?; limit_tmp = limit_tmp.saturating_sub(docids.len() as usize); output.push(docids); if limit_tmp == 0 { break } } output.into_iter().flatten().take(limit).collect() } }, FacetType::String => bail!("criteria facet type must be a number"), }; // if there isn't enough documents to return we try to complete that list // with documents that are maybe not faceted under this field and therefore // not returned by the previous facet iteration. if output.len() < limit { output.iter().for_each(|n| { documents_ids.remove(*n); }); let remaining = documents_ids.iter().take(limit - output.len()); output.extend(remaining); } Ok(output) } pub fn execute(&self) -> anyhow::Result { let limit = self.limit; let fst = self.index.words_fst(self.rtxn)?; // Construct the DFAs related to the query words. let derived_words = match self.query.as_deref().map(Self::generate_query_dfas) { Some(dfas) if !dfas.is_empty() => Some(self.fetch_words_docids(&fst, dfas)?), _otherwise => None, }; // We create the original candidates with the facet conditions results. let before = Instant::now(); let facet_candidates = match &self.facet_condition { Some(condition) => Some(condition.evaluate(self.rtxn, self.index)?), None => None, }; debug!("facet candidates: {:?} took {:.02?}", facet_candidates, before.elapsed()); let order_by_facet = { let criteria = self.index.criteria(self.rtxn)?; let result = criteria.into_iter().flat_map(|criterion| { match criterion { Criterion::Asc(fid) => Some((fid, true)), Criterion::Desc(fid) => Some((fid, false)), _ => None } }).next(); match result { Some((attr_name, is_ascending)) => { let field_id_map = self.index.fields_ids_map(self.rtxn)?; let fid = field_id_map.id(&attr_name).with_context(|| format!("unknown field: {:?}", attr_name))?; let faceted_fields = self.index.faceted_fields_ids(self.rtxn)?; let ftype = *faceted_fields.get(&fid) .with_context(|| format!("{:?} not found in the faceted fields.", attr_name)) .expect("corrupted data: "); Some((fid, ftype, is_ascending)) }, None => None, } }; let before = Instant::now(); let (candidates, derived_words) = match (facet_candidates, derived_words) { (Some(mut facet_candidates), Some(derived_words)) => { let words_candidates = Self::compute_candidates(&derived_words); facet_candidates.intersect_with(&words_candidates); (facet_candidates, derived_words) }, (None, Some(derived_words)) => { (Self::compute_candidates(&derived_words), derived_words) }, (Some(facet_candidates), None) => { // If the query is not set or results in no DFAs but // there is some facet conditions we return a placeholder. let documents_ids = match order_by_facet { Some((fid, ftype, is_ascending)) => { self.facet_ordered(fid, ftype, is_ascending, facet_candidates.clone(), limit)? }, None => facet_candidates.iter().take(limit).collect(), }; return Ok(SearchResult { documents_ids, candidates: facet_candidates, ..Default::default() }) }, (None, None) => { // If the query is not set or results in no DFAs we return a placeholder. let all_docids = self.index.documents_ids(self.rtxn)?; let documents_ids = match order_by_facet { Some((fid, ftype, is_ascending)) => { self.facet_ordered(fid, ftype, is_ascending, all_docids.clone(), limit)? }, None => all_docids.iter().take(limit).collect(), }; return Ok(SearchResult { documents_ids, candidates: all_docids,..Default::default() }) }, }; debug!("candidates: {:?} took {:.02?}", candidates, before.elapsed()); // The mana depth first search is a revised DFS that explore // solutions in the order of their proximities. let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates.clone()); let mut documents = Vec::new(); // We execute the Mdfs iterator until we find enough documents. while documents.iter().map(RoaringBitmap::len).sum::() < limit as u64 { match mdfs.next().transpose()? { Some((proximity, answer)) => { debug!("answer with a proximity of {}: {:?}", proximity, answer); documents.push(answer); }, None => break, } } let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect(); let documents_ids = match order_by_facet { Some((fid, ftype, order)) => { let mut ordered_documents = Vec::new(); for documents_ids in documents { let docids = self.facet_ordered(fid, ftype, order, documents_ids, limit)?; ordered_documents.push(docids); if ordered_documents.iter().map(Vec::len).sum::() >= limit { break } } ordered_documents.into_iter().flatten().take(limit).collect() }, None => documents.into_iter().flatten().take(limit).collect(), }; Ok(SearchResult { found_words, candidates, documents_ids }) } } impl fmt::Debug for Search<'_> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let Search { query, facet_condition, offset, limit, rtxn: _, index: _ } = self; f.debug_struct("Search") .field("query", query) .field("facet_condition", facet_condition) .field("offset", offset) .field("limit", limit) .finish() } } #[derive(Default)] pub struct SearchResult { pub found_words: HashSet, pub candidates: RoaringBitmap, // TODO those documents ids should be associated with their criteria scores. pub documents_ids: Vec, }