use std::borrow::Cow; use std::collections::hash_map::Entry; use std::collections::{HashMap, HashSet}; use std::fs::File; use std::io::{Read, Seek}; use fxhash::FxHashMap; use heed::RoTxn; use itertools::Itertools; use obkv::{KvReader, KvWriter}; use roaring::RoaringBitmap; use serde_json::Value; use smartstring::SmartString; use super::helpers::{ create_sorter, create_writer, keep_latest_obkv, merge_obkvs_and_operations, MergeFn, }; use super::{IndexDocumentsMethod, IndexerConfig}; use crate::documents::{DocumentsBatchIndex, EnrichedDocument, EnrichedDocumentsBatchReader}; use crate::error::{Error, InternalError, UserError}; use crate::index::{db_name, main_key}; use crate::update::{AvailableDocumentsIds, ClearDocuments, UpdateIndexingStep}; use crate::{ FieldDistribution, FieldId, FieldIdMapMissingEntry, FieldsIdsMap, Index, Result, BEU32, }; pub struct TransformOutput { pub primary_key: String, pub fields_ids_map: FieldsIdsMap, pub field_distribution: FieldDistribution, pub new_external_documents_ids: fst::Map>, pub new_documents_ids: RoaringBitmap, pub replaced_documents_ids: RoaringBitmap, pub documents_count: usize, pub original_documents: File, pub flattened_documents: File, } /// Extract the external ids, deduplicate and compute the new internal documents ids /// and fields ids, writing all the documents under their internal ids into a final file. /// /// Outputs the new `FieldsIdsMap`, the new `UsersIdsDocumentsIds` map, the new documents ids, /// the replaced documents ids, the number of documents in this update and the file /// containing all those documents. pub struct Transform<'a, 'i> { pub index: &'i Index, fields_ids_map: FieldsIdsMap, indexer_settings: &'a IndexerConfig, pub autogenerate_docids: bool, pub index_documents_method: IndexDocumentsMethod, available_documents_ids: AvailableDocumentsIds, // Both grenad follows the same format: // key | value // u32 | 1 byte for the Operation byte, the rest is the obkv of the document stored original_sorter: grenad::Sorter, flattened_sorter: grenad::Sorter, replaced_documents_ids: RoaringBitmap, new_documents_ids: RoaringBitmap, // To increase the cache locality and decrease the heap usage we use compact smartstring. new_external_documents_ids_builder: FxHashMap, u64>, documents_count: usize, } /// This enum is specific to the grenad sorter stored in the transform. /// It's used as the first byte of the grenads and tells you if the document id was an addition or a deletion. #[repr(u8)] pub enum Operation { Addition, Deletion, } /// Create a mapping between the field ids found in the document batch and the one that were /// already present in the index. /// /// If new fields are present in the addition, they are added to the index field ids map. fn create_fields_mapping( index_field_map: &mut FieldsIdsMap, batch_field_map: &DocumentsBatchIndex, ) -> Result> { batch_field_map .iter() // we sort by id here to ensure a deterministic mapping of the fields, that preserves // the original ordering. .sorted_by_key(|(&id, _)| id) .map(|(field, name)| match index_field_map.id(name) { Some(id) => Ok((*field, id)), None => index_field_map .insert(name) .ok_or(Error::UserError(UserError::AttributeLimitReached)) .map(|id| (*field, id)), }) .collect() } impl<'a, 'i> Transform<'a, 'i> { pub fn new( wtxn: &mut heed::RwTxn, index: &'i Index, indexer_settings: &'a IndexerConfig, index_documents_method: IndexDocumentsMethod, autogenerate_docids: bool, ) -> Result { // We must choose the appropriate merge function for when two or more documents // with the same user id must be merged or fully replaced in the same batch. let merge_function = match index_documents_method { IndexDocumentsMethod::ReplaceDocuments => keep_latest_obkv, IndexDocumentsMethod::UpdateDocuments => merge_obkvs_and_operations, }; // We initialize the sorter with the user indexing settings. let original_sorter = create_sorter( grenad::SortAlgorithm::Stable, merge_function, indexer_settings.chunk_compression_type, indexer_settings.chunk_compression_level, indexer_settings.max_nb_chunks, indexer_settings.max_memory.map(|mem| mem / 2), ); // We initialize the sorter with the user indexing settings. let flattened_sorter = create_sorter( grenad::SortAlgorithm::Stable, merge_function, indexer_settings.chunk_compression_type, indexer_settings.chunk_compression_level, indexer_settings.max_nb_chunks, indexer_settings.max_memory.map(|mem| mem / 2), ); let documents_ids = index.documents_ids(wtxn)?; let soft_deleted_documents_ids = index.soft_deleted_documents_ids(wtxn)?; Ok(Transform { index, fields_ids_map: index.fields_ids_map(wtxn)?, indexer_settings, autogenerate_docids, available_documents_ids: AvailableDocumentsIds::from_documents_ids( &documents_ids, &soft_deleted_documents_ids, ), original_sorter, flattened_sorter, index_documents_method, replaced_documents_ids: RoaringBitmap::new(), new_documents_ids: RoaringBitmap::new(), new_external_documents_ids_builder: FxHashMap::default(), documents_count: 0, }) } pub fn read_documents( &mut self, reader: EnrichedDocumentsBatchReader, wtxn: &mut heed::RwTxn, progress_callback: FP, should_abort: FA, ) -> Result where R: Read + Seek, FP: Fn(UpdateIndexingStep) + Sync, FA: Fn() -> bool + Sync, { let (mut cursor, fields_index) = reader.into_cursor_and_fields_index(); let external_documents_ids = self.index.external_documents_ids(wtxn)?; let mapping = create_fields_mapping(&mut self.fields_ids_map, &fields_index)?; let primary_key = cursor.primary_key().to_string(); let primary_key_id = self.fields_ids_map.insert(&primary_key).ok_or(UserError::AttributeLimitReached)?; let mut obkv_buffer = Vec::new(); let mut document_sorter_buffer = Vec::new(); let mut documents_count = 0; let mut docid_buffer: Vec = Vec::new(); let mut field_buffer: Vec<(u16, Cow<[u8]>)> = Vec::new(); while let Some(enriched_document) = cursor.next_enriched_document()? { let EnrichedDocument { document, document_id } = enriched_document; if should_abort() { return Err(Error::InternalError(InternalError::AbortedIndexation)); } // drop_and_reuse is called instead of .clear() to communicate to the compiler that field_buffer // does not keep references from the cursor between loop iterations let mut field_buffer_cache = drop_and_reuse(field_buffer); if self.indexer_settings.log_every_n.map_or(false, |len| documents_count % len == 0) { progress_callback(UpdateIndexingStep::RemapDocumentAddition { documents_seen: documents_count, }); } // When the document id has been auto-generated by the `enrich_documents_batch` // we must insert this document id into the remaped document. let external_id = document_id.value(); if document_id.is_generated() { serde_json::to_writer(&mut docid_buffer, external_id) .map_err(InternalError::SerdeJson)?; field_buffer_cache.push((primary_key_id, Cow::from(&docid_buffer))); } for (k, v) in document.iter() { let mapped_id = *mapping.get(&k).ok_or(InternalError::FieldIdMappingMissingEntry { key: k })?; field_buffer_cache.push((mapped_id, Cow::from(v))); } // Insertion in a obkv need to be done with keys ordered. For now they are ordered // according to the document addition key order, so we sort it according to the // fieldids map keys order. field_buffer_cache.sort_unstable_by(|(f1, _), (f2, _)| f1.cmp(f2)); // Build the new obkv document. let mut writer = obkv::KvWriter::new(&mut obkv_buffer); for (k, v) in field_buffer_cache.iter() { writer.insert(*k, v)?; } let mut original_docid = None; let docid = match self.new_external_documents_ids_builder.entry((*external_id).into()) { Entry::Occupied(entry) => *entry.get() as u32, Entry::Vacant(entry) => { // If the document was already in the db we mark it as a replaced document. // It'll be deleted later. if let Some(docid) = external_documents_ids.get(entry.key()) { // If it was already in the list of replaced documents it means it was deleted // by the remove_document method. We should starts as if it never existed. if self.replaced_documents_ids.insert(docid) { original_docid = Some(docid); } } let docid = self .available_documents_ids .next() .ok_or(UserError::DocumentLimitReached)?; entry.insert(docid as u64); docid } }; let mut skip_insertion = false; if let Some(original_docid) = original_docid { let original_key = BEU32::new(original_docid); let base_obkv = self .index .documents .remap_data_type::() .get(wtxn, &original_key)? .ok_or(InternalError::DatabaseMissingEntry { db_name: db_name::DOCUMENTS, key: None, })?; // we check if the two documents are exactly equal. If it's the case we can skip this document entirely if base_obkv == obkv_buffer { // we're not replacing anything self.replaced_documents_ids.remove(original_docid); // and we need to put back the original id as it was before self.new_external_documents_ids_builder.remove(external_id); skip_insertion = true; } else { // we associate the base document with the new key, everything will get merged later. document_sorter_buffer.clear(); document_sorter_buffer.push(Operation::Addition as u8); document_sorter_buffer.extend_from_slice(base_obkv); self.original_sorter.insert(docid.to_be_bytes(), &document_sorter_buffer)?; match self.flatten_from_fields_ids_map(KvReader::new(base_obkv))? { Some(flattened_obkv) => { // we recreate our buffer with the flattened documents document_sorter_buffer.clear(); document_sorter_buffer.push(Operation::Addition as u8); document_sorter_buffer.extend_from_slice(&flattened_obkv); self.flattened_sorter .insert(docid.to_be_bytes(), &document_sorter_buffer)? } None => self .flattened_sorter .insert(docid.to_be_bytes(), &document_sorter_buffer)?, } } } if !skip_insertion { self.new_documents_ids.insert(docid); document_sorter_buffer.clear(); document_sorter_buffer.push(Operation::Addition as u8); document_sorter_buffer.extend_from_slice(&obkv_buffer); // We use the extracted/generated user id as the key for this document. self.original_sorter.insert(docid.to_be_bytes(), &document_sorter_buffer)?; match self.flatten_from_fields_ids_map(KvReader::new(&obkv_buffer))? { Some(flattened_obkv) => { document_sorter_buffer.clear(); document_sorter_buffer.push(Operation::Addition as u8); document_sorter_buffer.extend_from_slice(&flattened_obkv); self.flattened_sorter .insert(docid.to_be_bytes(), &document_sorter_buffer)? } None => self .flattened_sorter .insert(docid.to_be_bytes(), &document_sorter_buffer)?, } } documents_count += 1; progress_callback(UpdateIndexingStep::RemapDocumentAddition { documents_seen: documents_count, }); field_buffer = drop_and_reuse(field_buffer_cache); docid_buffer.clear(); obkv_buffer.clear(); } progress_callback(UpdateIndexingStep::RemapDocumentAddition { documents_seen: documents_count, }); self.index.put_fields_ids_map(wtxn, &self.fields_ids_map)?; self.index.put_primary_key(wtxn, &primary_key)?; self.documents_count += documents_count; // Now that we have a valid sorter that contains the user id and the obkv we // give it to the last transforming function which returns the TransformOutput. Ok(documents_count) } /// The counter part of `read_documents` that removes documents either from the transform or the database. /// It can be called before, after or in between two calls of the `read_documents`. /// /// It needs to update all the internal datastructure in the transform. /// - If the document is coming from the database -> it's marked as a to_delete document /// - If the document to remove was inserted by the `read_documents` method before AND was present in the db, /// it's marked as `to_delete` + added into the grenad to ensure we don't reinsert it. /// - If the document to remove was inserted by the `read_documents` method before but was NOT present in the db, /// it's added into the grenad to ensure we don't insert it + removed from the list of new documents ids. /// - If the document to remove was not present in either the db or the transform we do nothing. pub fn remove_documents( &mut self, mut to_remove: Vec, wtxn: &mut heed::RwTxn, should_abort: FA, ) -> Result where FA: Fn() -> bool + Sync, { // there may be duplicates in the documents to remove. to_remove.sort_unstable(); to_remove.dedup(); let external_documents_ids = self.index.external_documents_ids(wtxn)?; let mut documents_deleted = 0; for to_remove in to_remove { if should_abort() { return Err(Error::InternalError(InternalError::AbortedIndexation)); } match self.new_external_documents_ids_builder.entry((*to_remove).into()) { // if the document was added in a previous iteration of the transform we make it as deleted in the sorters. Entry::Occupied(entry) => { let doc_id = *entry.get() as u32; self.original_sorter .insert(doc_id.to_be_bytes(), [Operation::Deletion as u8])?; self.flattened_sorter .insert(doc_id.to_be_bytes(), [Operation::Deletion as u8])?; // we must NOT update the list of replaced_documents_ids // Either: // 1. It's already in it and there is nothing to do // 2. It wasn't in it because the document was created by a previous batch and since // we're removing it there is nothing to do. self.new_documents_ids.remove(doc_id); entry.remove_entry(); } Entry::Vacant(entry) => { // If the document was already in the db we mark it as a `to_delete` document. // It'll be deleted later. We don't need to push anything to the sorters. if let Some(docid) = external_documents_ids.get(entry.key()) { self.replaced_documents_ids.insert(docid); } else { // if the document is nowehere to be found, there is nothing to do and we must NOT // increment the count of documents_deleted continue; } } }; documents_deleted += 1; } Ok(documents_deleted) } // Flatten a document from the fields ids map contained in self and insert the new // created fields. Returns `None` if the document doesn't need to be flattened. fn flatten_from_fields_ids_map(&mut self, obkv: KvReader) -> Result>> { if obkv .iter() .all(|(_, value)| !json_depth_checker::should_flatten_from_unchecked_slice(value)) { return Ok(None); } // store the keys and values the original obkv + the flattened json // We first extract all the key+value out of the obkv. If a value is not nested // we keep a reference on its value. If the value is nested we'll get its value // as an owned `Vec` after flattening it. let mut key_value: Vec<(FieldId, Cow<[u8]>)> = Vec::new(); // the object we're going to use to store the fields that need to be flattened. let mut doc = serde_json::Map::new(); // we recreate a json containing only the fields that needs to be flattened. // all the raw values get inserted directly in the `key_value` vec. for (key, value) in obkv.iter() { if json_depth_checker::should_flatten_from_unchecked_slice(value) { let key = self.fields_ids_map.name(key).ok_or(FieldIdMapMissingEntry::FieldId { field_id: key, process: "Flatten from fields ids map.", })?; let value = serde_json::from_slice::(value) .map_err(crate::error::InternalError::SerdeJson)?; doc.insert(key.to_string(), value); } else { key_value.push((key, value.into())); } } let flattened = flatten_serde_json::flatten(&doc); // Once we have the flattened version we insert all the new generated fields_ids // (if any) in the fields ids map and serialize the value. for (key, value) in flattened.into_iter() { let fid = self.fields_ids_map.insert(&key).ok_or(UserError::AttributeLimitReached)?; let value = serde_json::to_vec(&value).map_err(InternalError::SerdeJson)?; key_value.push((fid, value.into())); } // we sort the key. If there was a conflict between the obkv and the new generated value the // keys will be consecutive. key_value.sort_unstable_by_key(|(key, _)| *key); let mut buffer = Vec::new(); Self::create_obkv_from_key_value(&mut key_value, &mut buffer)?; Ok(Some(buffer)) } /// Generate an obkv from a slice of key / value sorted by key. fn create_obkv_from_key_value( key_value: &mut [(FieldId, Cow<[u8]>)], output_buffer: &mut Vec, ) -> Result<()> { debug_assert!( key_value.windows(2).all(|vec| vec[0].0 <= vec[1].0), "The slice of key / value pair must be sorted." ); output_buffer.clear(); let mut writer = KvWriter::new(output_buffer); let mut skip_next_value = false; for things in key_value.windows(2) { if skip_next_value { skip_next_value = false; continue; } let (key1, value1) = &things[0]; let (key2, value2) = &things[1]; // now we're going to look for conflicts between the keys. For example the following documents would cause a conflict: // { "doggo.name": "jean", "doggo": { "name": "paul" } } // we should find a first "doggo.name" from the obkv and a second one from the flattening. // but we must generate the following document: // { "doggo.name": ["jean", "paul"] } // thus we're going to merge the value from the obkv and the flattened document in a single array and skip the next // iteration. if key1 == key2 { skip_next_value = true; let value1 = serde_json::from_slice(value1) .map_err(crate::error::InternalError::SerdeJson)?; let value2 = serde_json::from_slice(value2) .map_err(crate::error::InternalError::SerdeJson)?; let value = match (value1, value2) { (Value::Array(mut left), Value::Array(mut right)) => { left.append(&mut right); Value::Array(left) } (Value::Array(mut array), value) | (value, Value::Array(mut array)) => { array.push(value); Value::Array(array) } (left, right) => Value::Array(vec![left, right]), }; let value = serde_json::to_vec(&value).map_err(InternalError::SerdeJson)?; writer.insert(*key1, value)?; } else { writer.insert(*key1, value1)?; } } if !skip_next_value { // the unwrap is safe here, we know there was at least one value in the document let (key, value) = key_value.last().unwrap(); writer.insert(*key, value)?; } Ok(()) } fn remove_deleted_documents_from_field_distribution( &self, rtxn: &RoTxn, field_distribution: &mut FieldDistribution, ) -> Result<()> { for deleted_docid in self.replaced_documents_ids.iter() { let obkv = self.index.documents.get(rtxn, &BEU32::new(deleted_docid))?.ok_or( InternalError::DatabaseMissingEntry { db_name: db_name::DOCUMENTS, key: None }, )?; for (key, _) in obkv.iter() { let name = self.fields_ids_map.name(key).ok_or(FieldIdMapMissingEntry::FieldId { field_id: key, process: "Computing field distribution in transform.", })?; // We checked that the document was in the db earlier. If we can't find it it means // there is an inconsistency between the field distribution and the field id map. let field = field_distribution.get_mut(name).ok_or(FieldIdMapMissingEntry::FieldId { field_id: key, process: "Accessing field distribution in transform.", })?; *field -= 1; if *field == 0 { // since we were able to get the field right before it's safe to unwrap here field_distribution.remove(name).unwrap(); } } } Ok(()) } /// Generate the `TransformOutput` based on the given sorter that can be generated from any /// format like CSV, JSON or JSON stream. This sorter must contain a key that is the document /// id for the user side and the value must be an obkv where keys are valid fields ids. pub(crate) fn output_from_sorter( self, wtxn: &mut heed::RwTxn, progress_callback: F, ) -> Result where F: Fn(UpdateIndexingStep) + Sync, { puffin::profile_function!(); let primary_key = self .index .primary_key(wtxn)? .ok_or(Error::InternalError(InternalError::DatabaseMissingEntry { db_name: db_name::MAIN, key: Some(main_key::PRIMARY_KEY_KEY), }))? .to_string(); // We create a final writer to write the new documents in order from the sorter. let mut writer = create_writer( self.indexer_settings.chunk_compression_type, self.indexer_settings.chunk_compression_level, tempfile::tempfile()?, ); // To compute the field distribution we need to; // 1. Remove all the deleted documents from the field distribution // 2. Add all the new documents to the field distribution let mut field_distribution = self.index.field_distribution(wtxn)?; self.remove_deleted_documents_from_field_distribution(wtxn, &mut field_distribution)?; // Here we are going to do the document count + field distribution + `write_into_stream_writer` let mut iter = self.original_sorter.into_stream_merger_iter()?; // used only for the callback let mut documents_count = 0; while let Some((key, val)) = iter.next()? { if val[0] == Operation::Deletion as u8 { continue; } let val = &val[1..]; // send a callback to show at which step we are documents_count += 1; progress_callback(UpdateIndexingStep::ComputeIdsAndMergeDocuments { documents_seen: documents_count, total_documents: self.documents_count, }); // We increment all the field of the current document in the field distribution. let obkv = KvReader::new(val); for (key, _) in obkv.iter() { let name = self.fields_ids_map.name(key).ok_or(FieldIdMapMissingEntry::FieldId { field_id: key, process: "Computing field distribution in transform.", })?; *field_distribution.entry(name.to_string()).or_insert(0) += 1; } writer.insert(key, val)?; } let mut original_documents = writer.into_inner()?; // We then extract the file and reset the seek to be able to read it again. original_documents.rewind()?; // We create a final writer to write the new documents in order from the sorter. let mut writer = create_writer( self.indexer_settings.chunk_compression_type, self.indexer_settings.chunk_compression_level, tempfile::tempfile()?, ); // Once we have written all the documents into the final sorter, we write the nested documents // into this writer. // We get rids of the `Operation` byte and skip the deleted documents as well. let mut iter = self.flattened_sorter.into_stream_merger_iter()?; while let Some((key, val)) = iter.next()? { if val[0] == Operation::Deletion as u8 { continue; } let val = &val[1..]; writer.insert(key, val)?; } let mut flattened_documents = writer.into_inner()?; flattened_documents.rewind()?; let mut new_external_documents_ids_builder: Vec<_> = self.new_external_documents_ids_builder.into_iter().collect(); new_external_documents_ids_builder .sort_unstable_by(|(left, _), (right, _)| left.cmp(right)); let mut fst_new_external_documents_ids_builder = fst::MapBuilder::memory(); new_external_documents_ids_builder.into_iter().try_for_each(|(key, value)| { fst_new_external_documents_ids_builder.insert(key, value) })?; let new_external_documents_ids = fst_new_external_documents_ids_builder.into_map(); Ok(TransformOutput { primary_key, fields_ids_map: self.fields_ids_map, field_distribution, new_external_documents_ids: new_external_documents_ids.map_data(Cow::Owned).unwrap(), new_documents_ids: self.new_documents_ids, replaced_documents_ids: self.replaced_documents_ids, documents_count: self.documents_count, original_documents: original_documents.into_inner().map_err(|err| err.into_error())?, flattened_documents: flattened_documents .into_inner() .map_err(|err| err.into_error())?, }) } /// Clear all databases. Returns a `TransformOutput` with a file that contains the documents /// of the index with the attributes reordered accordingly to the `FieldsIdsMap` given as argument. /// // TODO this can be done in parallel by using the rayon `ThreadPool`. pub fn prepare_for_documents_reindexing( self, wtxn: &mut heed::RwTxn<'i, '_>, old_fields_ids_map: FieldsIdsMap, mut new_fields_ids_map: FieldsIdsMap, ) -> Result { // There already has been a document addition, the primary key should be set by now. let primary_key = self .index .primary_key(wtxn)? .ok_or(InternalError::DatabaseMissingEntry { db_name: db_name::MAIN, key: Some(main_key::PRIMARY_KEY_KEY), })? .to_string(); let field_distribution = self.index.field_distribution(wtxn)?; // Delete the soft deleted document ids from the maps inside the external_document_ids structure let new_external_documents_ids = { let mut external_documents_ids = self.index.external_documents_ids(wtxn)?; external_documents_ids.delete_soft_deleted_documents_ids_from_fsts()?; // This call should be free and can't fail since the previous method merged both fsts. external_documents_ids.into_static().to_fst()?.into_owned() }; let documents_ids = self.index.documents_ids(wtxn)?; let documents_count = documents_ids.len() as usize; // We create a final writer to write the new documents in order from the sorter. let mut original_writer = create_writer( self.indexer_settings.chunk_compression_type, self.indexer_settings.chunk_compression_level, tempfile::tempfile()?, ); // We create a final writer to write the new documents in order from the sorter. let mut flattened_writer = create_writer( self.indexer_settings.chunk_compression_type, self.indexer_settings.chunk_compression_level, tempfile::tempfile()?, ); let mut obkv_buffer = Vec::new(); for result in self.index.all_documents(wtxn)? { let (docid, obkv) = result?; obkv_buffer.clear(); let mut obkv_writer = obkv::KvWriter::<_, FieldId>::new(&mut obkv_buffer); // We iterate over the new `FieldsIdsMap` ids in order and construct the new obkv. for (id, name) in new_fields_ids_map.iter() { if let Some(val) = old_fields_ids_map.id(name).and_then(|id| obkv.get(id)) { obkv_writer.insert(id, val)?; } } let buffer = obkv_writer.into_inner()?; original_writer.insert(docid.to_be_bytes(), &buffer)?; // Once we have the document. We're going to flatten it // and insert it in the flattened sorter. let mut doc = serde_json::Map::new(); let reader = obkv::KvReader::new(buffer); for (k, v) in reader.iter() { let key = new_fields_ids_map.name(k).ok_or(FieldIdMapMissingEntry::FieldId { field_id: k, process: "Accessing field distribution in transform.", })?; let value = serde_json::from_slice::(v) .map_err(InternalError::SerdeJson)?; doc.insert(key.to_string(), value); } let flattened = flatten_serde_json::flatten(&doc); // Once we have the flattened version we can convert it back to obkv and // insert all the new generated fields_ids (if any) in the fields ids map. let mut buffer: Vec = Vec::new(); let mut writer = KvWriter::new(&mut buffer); let mut flattened: Vec<_> = flattened.into_iter().collect(); // we reorder the field to get all the known field first flattened.sort_unstable_by_key(|(key, _)| { new_fields_ids_map.id(key).unwrap_or(FieldId::MAX) }); for (key, value) in flattened { let fid = new_fields_ids_map.insert(&key).ok_or(UserError::AttributeLimitReached)?; let value = serde_json::to_vec(&value).map_err(InternalError::SerdeJson)?; writer.insert(fid, &value)?; } flattened_writer.insert(docid.to_be_bytes(), &buffer)?; } // Once we have written all the documents, we extract // the file and reset the seek to be able to read it again. let mut original_documents = original_writer.into_inner()?; original_documents.rewind()?; let mut flattened_documents = flattened_writer.into_inner()?; flattened_documents.rewind()?; let output = TransformOutput { primary_key, fields_ids_map: new_fields_ids_map, field_distribution, new_external_documents_ids, new_documents_ids: documents_ids, replaced_documents_ids: RoaringBitmap::default(), documents_count, original_documents: original_documents.into_inner().map_err(|err| err.into_error())?, flattened_documents: flattened_documents .into_inner() .map_err(|err| err.into_error())?, }; let new_facets = output.compute_real_facets(wtxn, self.index)?; self.index.put_faceted_fields(wtxn, &new_facets)?; // We clear the full database (words-fst, documents ids and documents content). ClearDocuments::new(wtxn, self.index).execute()?; Ok(output) } } /// Drops all the value of type `U` in vec, and reuses the allocation to create a `Vec`. /// /// The size and alignment of T and U must match. fn drop_and_reuse(mut vec: Vec) -> Vec { debug_assert_eq!(std::mem::align_of::(), std::mem::align_of::()); debug_assert_eq!(std::mem::size_of::(), std::mem::size_of::()); vec.clear(); debug_assert!(vec.is_empty()); vec.into_iter().map(|_| unreachable!()).collect() } impl TransformOutput { // find and insert the new field ids pub fn compute_real_facets(&self, rtxn: &RoTxn, index: &Index) -> Result> { let user_defined_facets = index.user_defined_faceted_fields(rtxn)?; Ok(self .fields_ids_map .names() .filter(|&field| crate::is_faceted(field, &user_defined_facets)) .map(|field| field.to_string()) .collect()) } } #[cfg(test)] mod test { use super::*; #[test] fn merge_obkvs() { let mut doc_0 = Vec::new(); let mut kv_writer = KvWriter::new(&mut doc_0); kv_writer.insert(0_u8, [0]).unwrap(); kv_writer.finish().unwrap(); doc_0.insert(0, Operation::Addition as u8); let ret = merge_obkvs_and_operations(&[], &[Cow::from(doc_0.as_slice())]).unwrap(); assert_eq!(*ret, doc_0); let ret = merge_obkvs_and_operations( &[], &[Cow::from([Operation::Deletion as u8].as_slice()), Cow::from(doc_0.as_slice())], ) .unwrap(); assert_eq!(*ret, doc_0); let ret = merge_obkvs_and_operations( &[], &[Cow::from(doc_0.as_slice()), Cow::from([Operation::Deletion as u8].as_slice())], ) .unwrap(); assert_eq!(*ret, [Operation::Deletion as u8]); let ret = merge_obkvs_and_operations( &[], &[ Cow::from([Operation::Addition as u8, 1].as_slice()), Cow::from([Operation::Deletion as u8].as_slice()), Cow::from(doc_0.as_slice()), ], ) .unwrap(); assert_eq!(*ret, doc_0); } }