use std::collections::{HashMap, HashSet}; use fst::{IntoStreamer, Streamer}; use levenshtein_automata::DFA; use levenshtein_automata::LevenshteinAutomatonBuilder as LevBuilder; use log::debug; use once_cell::sync::Lazy; use roaring::bitmap::{IntoIter, RoaringBitmap}; use near_proximity::near_proximity; use crate::query_tokens::{QueryTokens, QueryToken}; use crate::{Index, DocumentId, Position, Attribute}; // Building these factories is not free. static LEVDIST0: Lazy = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST1: Lazy = Lazy::new(|| LevBuilder::new(1, true)); static LEVDIST2: Lazy = Lazy::new(|| LevBuilder::new(2, true)); pub struct Search<'a> { query: Option, offset: usize, limit: usize, rtxn: &'a heed::RoTxn, index: &'a Index, } impl<'a> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { Search { query: None, offset: 0, limit: 20, rtxn, index, } } pub fn query(&mut self, query: impl Into) -> &mut Search<'a> { self.query = Some(query.into()); self } pub fn offset(&mut self, offset: usize) -> &mut Search<'a> { self.offset = offset; self } pub fn limit(&mut self, limit: usize) -> &mut Search<'a> { self.limit = limit; self } /// Extracts the query words from the query string and returns the DFAs accordingly. /// TODO introduce settings for the number of typos regarding the words lengths. fn generate_query_dfas(query: &str) -> Vec<(String, bool, DFA)> { let (lev0, lev1, lev2) = (&LEVDIST0, &LEVDIST1, &LEVDIST2); let words: Vec<_> = QueryTokens::new(query).collect(); let ends_with_whitespace = query.chars().last().map_or(false, char::is_whitespace); let number_of_words = words.len(); words.into_iter().enumerate().map(|(i, word)| { let (word, quoted) = match word { QueryToken::Free(word) => (word.to_lowercase(), word.len() <= 3), QueryToken::Quoted(word) => (word.to_lowercase(), true), }; let is_last = i + 1 == number_of_words; let is_prefix = is_last && !ends_with_whitespace && !quoted; let lev = match word.len() { 0..=4 => if quoted { lev0 } else { lev0 }, 5..=8 => if quoted { lev0 } else { lev1 }, _ => if quoted { lev0 } else { lev2 }, }; let dfa = if is_prefix { lev.build_prefix_dfa(&word) } else { lev.build_dfa(&word) }; (word, is_prefix, dfa) }) .collect() } /// Fetch the words from the given FST related to the /// given DFAs along with the associated documents ids. fn fetch_words_docids( rtxn: &heed::RoTxn, index: &Index, fst: &fst::Set<&[u8]>, dfas: Vec<(String, bool, DFA)>, ) -> anyhow::Result, RoaringBitmap)>> { // A Vec storing all the derived words from the original query words, associated // with the distance from the original word and the docids where the words appears. let mut derived_words = Vec::<(HashMap::, RoaringBitmap)>::with_capacity(dfas.len()); for (_word, _is_prefix, dfa) in dfas { let mut acc_derived_words = HashMap::new(); let mut unions_docids = RoaringBitmap::new(); let mut stream = fst.search_with_state(&dfa).into_stream(); while let Some((word, state)) = stream.next() { let word = std::str::from_utf8(word)?; let docids = index.word_docids.get(rtxn, word)?.unwrap(); let distance = dfa.distance(state); unions_docids.union_with(&docids); acc_derived_words.insert(word.to_string(), (distance.to_u8(), docids)); } derived_words.push((acc_derived_words, unions_docids)); } Ok(derived_words) } /// Returns the set of docids that contains all of the query words. fn compute_candidates( rtxn: &heed::RoTxn, index: &Index, derived_words: &[(HashMap, RoaringBitmap)], ) -> anyhow::Result { // we do a union between all the docids of each of the derived words, // we got N unions (the number of original query words), we then intersect them. let mut candidates = RoaringBitmap::new(); for (i, (_, union_docids)) in derived_words.iter().enumerate() { if i == 0 { candidates = union_docids.clone(); } else { candidates.intersect_with(&union_docids); } } Ok(candidates) } fn fecth_keywords( rtxn: &heed::RoTxn, index: &Index, derived_words: &[(HashMap, RoaringBitmap)], candidate: DocumentId, ) -> anyhow::Result> { let mut keywords = Vec::with_capacity(derived_words.len()); for (words, _) in derived_words { let mut union_positions = RoaringBitmap::new(); for (word, (_distance, docids)) in words { if docids.contains(candidate) { let positions = index.word_docid_positions.get(rtxn, &(word, candidate))?.unwrap(); union_positions.union_with(&positions); } } keywords.push(union_positions.into_iter()); } Ok(keywords) } pub fn execute(&self) -> anyhow::Result { let rtxn = self.rtxn; let index = self.index; let limit = self.limit; let fst = match index.fst(rtxn)? { Some(fst) => fst, None => return Ok(Default::default()), }; // Construct the DFAs related to the query words. // TODO do a placeholder search when query string isn't present. let dfas = match &self.query { Some(q) => Self::generate_query_dfas(q), None => return Ok(Default::default()), }; if dfas.is_empty() { return Ok(Default::default()); } let derived_words = Self::fetch_words_docids(rtxn, index, &fst, dfas)?; let candidates = Self::compute_candidates(rtxn, index, &derived_words)?; debug!("candidates: {:?}", candidates); let mut documents = Vec::new(); let min_proximity = derived_words.len() as u32; let mut number_min_proximity = 0; let mut paths = Vec::new(); for candidate in candidates { let keywords = Self::fecth_keywords(rtxn, index, &derived_words, candidate)?; near_proximity(keywords, &mut paths); if let Some((prox, _path)) = paths.first() { documents.push((*prox, candidate)); if *prox == min_proximity { number_min_proximity += 1; if number_min_proximity >= limit { break } } } } documents.sort_unstable_by_key(|(prox, _)| *prox); let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect(); let documents_ids = documents.into_iter().map(|(_, id)| id).take(limit).collect(); Ok(SearchResult { found_words, documents_ids }) } } #[derive(Default)] pub struct SearchResult { pub found_words: HashSet, // TODO those documents ids should be associated with their criteria scores. pub documents_ids: Vec, }