use std::collections::{BTreeMap, HashSet}; use std::ops::Bound::Unbounded; use std::{fmt, mem}; use heed::types::ByteSlice; use roaring::RoaringBitmap; use crate::error::UserError; use crate::facet::FacetType; use crate::heed_codec::facet::{ FacetStringLevelZeroCodec, FieldDocIdFacetF64Codec, FieldDocIdFacetStringCodec, }; use crate::search::facet::{FacetNumberIter, FacetNumberRange, FacetStringIter}; use crate::{FieldId, Index, Result}; /// The default number of values by facets that will /// be fetched from the key-value store. pub const DEFAULT_VALUES_PER_FACET: usize = 100; /// Threshold on the number of candidates that will make /// the system to choose between one algorithm or another. const CANDIDATES_THRESHOLD: u64 = 3000; pub struct FacetDistribution<'a> { facets: Option>, candidates: Option, max_values_per_facet: usize, rtxn: &'a heed::RoTxn<'a>, index: &'a Index, } impl<'a> FacetDistribution<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> FacetDistribution<'a> { FacetDistribution { facets: None, candidates: None, max_values_per_facet: DEFAULT_VALUES_PER_FACET, rtxn, index, } } pub fn facets, A: AsRef>(&mut self, names: I) -> &mut Self { self.facets = Some(names.into_iter().map(|s| s.as_ref().to_string()).collect()); self } pub fn max_values_per_facet(&mut self, max: usize) -> &mut Self { self.max_values_per_facet = max; self } pub fn candidates(&mut self, candidates: RoaringBitmap) -> &mut Self { self.candidates = Some(candidates); self } /// There is a small amount of candidates OR we ask for facet string values so we /// decide to iterate over the facet values of each one of them, one by one. fn facet_distribution_from_documents( &self, field_id: FieldId, facet_type: FacetType, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { match facet_type { FacetType::Number => { let mut key_buffer: Vec<_> = field_id.to_be_bytes().iter().copied().collect(); let distribution_prelength = distribution.len(); let db = self.index.field_id_docid_facet_f64s; for docid in candidates.into_iter() { key_buffer.truncate(mem::size_of::()); key_buffer.extend_from_slice(&docid.to_be_bytes()); let iter = db .remap_key_type::() .prefix_iter(self.rtxn, &key_buffer)? .remap_key_type::(); for result in iter { let ((_, _, value), ()) = result?; *distribution.entry(value.to_string()).or_insert(0) += 1; if distribution.len() - distribution_prelength == self.max_values_per_facet { break; } } } } FacetType::String => { let mut normalized_distribution = BTreeMap::new(); let mut key_buffer: Vec<_> = field_id.to_be_bytes().iter().copied().collect(); let db = self.index.field_id_docid_facet_strings; for docid in candidates.into_iter() { key_buffer.truncate(mem::size_of::()); key_buffer.extend_from_slice(&docid.to_be_bytes()); let iter = db .remap_key_type::() .prefix_iter(self.rtxn, &key_buffer)? .remap_key_type::(); for result in iter { let ((_, _, normalized_value), original_value) = result?; let (_, count) = normalized_distribution .entry(normalized_value) .or_insert_with(|| (original_value, 0)); *count += 1; if normalized_distribution.len() == self.max_values_per_facet { break; } } } let iter = normalized_distribution .into_iter() .map(|(_normalized, (original, count))| (original.to_string(), count)); distribution.extend(iter); } } Ok(()) } /// There is too much documents, we use the facet levels to move throught /// the facet values, to find the candidates and values associated. fn facet_numbers_distribution_from_facet_levels( &self, field_id: FieldId, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { let iter = FacetNumberIter::new_non_reducing(self.rtxn, self.index, field_id, candidates.clone())?; for result in iter { let (value, mut docids) = result?; docids &= candidates; if !docids.is_empty() { distribution.insert(value.to_string(), docids.len()); } if distribution.len() == self.max_values_per_facet { break; } } Ok(()) } fn facet_strings_distribution_from_facet_levels( &self, field_id: FieldId, candidates: &RoaringBitmap, distribution: &mut BTreeMap, ) -> heed::Result<()> { let iter = FacetStringIter::new_non_reducing(self.rtxn, self.index, field_id, candidates.clone())?; for result in iter { let (_normalized, original, mut docids) = result?; docids &= candidates; if !docids.is_empty() { distribution.insert(original.to_string(), docids.len()); } if distribution.len() == self.max_values_per_facet { break; } } Ok(()) } /// Placeholder search, a.k.a. no candidates were specified. We iterate throught the /// facet values one by one and iterate on the facet level 0 for numbers. fn facet_values_from_raw_facet_database( &self, field_id: FieldId, ) -> heed::Result> { let mut distribution = BTreeMap::new(); let db = self.index.facet_id_f64_docids; let range = FacetNumberRange::new(self.rtxn, db, field_id, 0, Unbounded, Unbounded)?; for result in range { let ((_, _, value, _), docids) = result?; distribution.insert(value.to_string(), docids.len()); if distribution.len() == self.max_values_per_facet { break; } } let iter = self .index .facet_id_string_docids .remap_key_type::() .prefix_iter(self.rtxn, &field_id.to_be_bytes())? .remap_key_type::(); let mut normalized_distribution = BTreeMap::new(); for result in iter { let ((_, normalized_value), (original_value, docids)) = result?; normalized_distribution.insert(normalized_value, (original_value, docids.len())); if normalized_distribution.len() == self.max_values_per_facet { break; } } let iter = normalized_distribution .into_iter() .map(|(_normalized, (original, count))| (original.to_string(), count)); distribution.extend(iter); Ok(distribution) } fn facet_values(&self, field_id: FieldId) -> heed::Result> { use FacetType::{Number, String}; match self.candidates { Some(ref candidates) => { // Classic search, candidates were specified, we must return facet values only related // to those candidates. We also enter here for facet strings for performance reasons. let mut distribution = BTreeMap::new(); if candidates.len() <= CANDIDATES_THRESHOLD { self.facet_distribution_from_documents( field_id, Number, candidates, &mut distribution, )?; self.facet_distribution_from_documents( field_id, String, candidates, &mut distribution, )?; } else { self.facet_numbers_distribution_from_facet_levels( field_id, candidates, &mut distribution, )?; self.facet_strings_distribution_from_facet_levels( field_id, candidates, &mut distribution, )?; } Ok(distribution) } None => self.facet_values_from_raw_facet_database(field_id), } } pub fn execute(&self) -> Result>> { let fields_ids_map = self.index.fields_ids_map(self.rtxn)?; let filterable_fields = self.index.filterable_fields(self.rtxn)?; let fields = match self.facets { Some(ref facets) => { let invalid_fields: HashSet<_> = facets .iter() .filter(|facet| !crate::is_faceted(facet, &filterable_fields)) .collect(); if !invalid_fields.is_empty() { return Err(UserError::InvalidFacetsDistribution { invalid_facets_name: invalid_fields.into_iter().cloned().collect(), } .into()); } else { facets.clone() } } None => filterable_fields, }; let mut distribution = BTreeMap::new(); for (fid, name) in fields_ids_map.iter() { if crate::is_faceted(name, &fields) { let values = self.facet_values(fid)?; distribution.insert(name.to_string(), values); } } Ok(distribution) } } impl fmt::Debug for FacetDistribution<'_> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let FacetDistribution { facets, candidates, max_values_per_facet, rtxn: _, index: _ } = self; f.debug_struct("FacetDistribution") .field("facets", facets) .field("candidates", candidates) .field("max_values_per_facet", max_values_per_facet) .finish() } }