2501 Commits

Author SHA1 Message Date
Loïc Lecrenier
6f49126223 Fix db_snap macro with inline parameter 2022-08-10 15:55:22 +02:00
Loïc Lecrenier
12920f2a4f Fix paths of snapshot tests 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
4b7fd4dfae Update insta version 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
ce560fdcb5 Add documentation for db_snap! 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
748bb86b5b cargo fmt 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
051f24f674 Switch to snapshot tests for search/matches/mod.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
d2e01528a6 Switch to snapshot tests for search/criteria/typo.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
a9c7d82693 Switch to snapshot tests for search/criteria/attribute.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
4bba2f41d7 Switch to snapshot tests for query_tree.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
8ac24d3114 Cargo fmt + fix compiler warnings/error 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
6066256689 Add snapshot tests for indexing of word_prefix_pair_proximity_docids 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
3a734af159 Add snapshot tests for Facets::execute 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
b9907997e4 Remove old snapshot tests code 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
ef889ade5d Refactor snapshot tests 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
334098a7e0 Add index snapshot test helper function 2022-08-10 15:53:46 +02:00
ManyTheFish
b389be48a0 Factorize phrase computation 2022-08-08 10:37:31 +02:00
Loïc Lecrenier
58cb1c1bda Simplify unit tests in facet/filter.rs 2022-08-04 12:03:44 +02:00
Loïc Lecrenier
acff17fb88 Simplify indexing tests 2022-08-04 12:03:13 +02:00
bors[bot]
21284cf235
Merge #556
556: Add EXISTS filter r=loiclec a=loiclec

## What does this PR do?

Fixes issue [#2484](https://github.com/meilisearch/meilisearch/issues/2484) in the meilisearch repo.

It creates a `field EXISTS` filter which selects all documents containing the `field` key. 
For example, with the following documents:
```json
[{
	"id": 0,
	"colour": []
},
{
	"id": 1,
	"colour": ["blue", "green"]
},
{
	"id": 2,
	"colour": 145238
},
{
	"id": 3,
	"colour": null
},
{
	"id": 4,
	"colour": {
		"green": []
	}
},
{
	"id": 5,
	"colour": {}
},
{
	"id": 6
}]
```
Then the filter `colour EXISTS` selects the ids `[0, 1, 2, 3, 4, 5]`. The filter `colour NOT EXISTS` selects `[6]`.

## Details
There is a new database named `facet-id-exists-docids`. Its keys are field ids and its values are bitmaps of all the document ids where the corresponding field exists.

To create this database, the indexing part of milli had to be adapted. The implementation there is basically copy/pasted from the code handling the `facet-id-f64-docids` database, with appropriate modifications in place.

There was an issue involving the flattening of documents during (re)indexing. Previously, the following JSON:
```json
{
    "id": 0,
    "colour": [],
    "size": {}
}
```
would be flattened to:
```json
{
    "id": 0
}
```
prior to being given to the extraction pipeline.

This transformation would lose the information that is needed to populate the `facet-id-exists-docids` database. Therefore, I have also changed the implementation of the `flatten-serde-json` crate. Now, as it traverses the Json, it keeps track of which key was encountered. Then, at the end, if a previously encountered key is not present in the flattened object, it adds that key to the object with an empty array as value. For example:
```json
{
    "id": 0,
    "colour": {
        "green": [],
        "blue": 1
    },
    "size": {}
} 
```
becomes
```json
{
    "id": 0,
    "colour": [],
    "colour.green": [],
    "colour.blue": 1,
    "size": []
} 
```


Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-08-04 09:46:06 +00:00
bors[bot]
50f6524ff2
Merge #579
579: Stop reindexing already indexed documents r=ManyTheFish a=irevoire

```
 % ./compare.sh indexing_stop-reindexing-unchanged-documents_cb5a1669.json indexing_main_eeba1960.json
group                                                                     indexing_main_eeba1960                 indexing_stop-reindexing-unchanged-documents_cb5a1669
-----                                                                     ----------------------                 -----------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.03      2.0±0.22ms        ? ?/sec    1.00  1955.4±336.24µs        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.08     11.0±2.93ms        ? ?/sec    1.00     10.2±4.04ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.00     15.1±3.89ms        ? ?/sec    1.14     17.1±5.18ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.26    59.2±12.01ms        ? ?/sec    1.00     47.1±8.52ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.08   316.6±31.53ms        ? ?/sec    1.00   293.6±17.00ms        ? ?/sec
indexing/Indexing geo_point                                               1.01      60.9±0.31s        ? ?/sec    1.00      60.6±0.36s        ? ?/sec
indexing/Indexing movies in three batches                                 1.04      20.0±0.30s        ? ?/sec    1.00      19.2±0.25s        ? ?/sec
indexing/Indexing movies with default settings                            1.02      19.1±0.18s        ? ?/sec    1.00      18.7±0.24s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.02      26.2±0.29s        ? ?/sec    1.00      25.9±0.22s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.02      25.3±0.32s        ? ?/sec    1.00      24.7±0.26s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.00      66.7±0.41s        ? ?/sec    1.01      67.1±0.86s        ? ?/sec
indexing/Indexing songs with default settings                             1.00      58.3±0.90s        ? ?/sec    1.01      58.8±1.32s        ? ?/sec
indexing/Indexing songs without any facets                                1.00      54.5±1.43s        ? ?/sec    1.01      55.2±1.29s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.00      57.9±1.20s        ? ?/sec    1.01      58.4±0.93s        ? ?/sec
indexing/Indexing wiki                                                    1.00   1052.0±10.95s        ? ?/sec    1.02   1069.4±20.38s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.00    1193.1±8.83s        ? ?/sec    1.00    1189.5±9.40s        ? ?/sec
indexing/Reindexing geo_point                                             3.22      67.5±0.73s        ? ?/sec    1.00      21.0±0.16s        ? ?/sec
indexing/Reindexing movies with default settings                          3.75      19.4±0.28s        ? ?/sec    1.00       5.2±0.05s        ? ?/sec
indexing/Reindexing songs with default settings                           8.90      61.4±0.91s        ? ?/sec    1.00       6.9±0.07s        ? ?/sec
indexing/Reindexing wiki                                                  1.00   1748.2±35.68s        ? ?/sec    1.00   1750.5±18.53s        ? ?/sec
```

tldr: We do not lose any performance on the normal indexing benchmark, but we get between 3 and 8 times faster on the reindexing benchmarks 👍 

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-08-04 08:10:37 +00:00
ManyTheFish
d6f9a60a32 fix: Remove whitespace trimming during document id validation
fix #592
2022-08-03 11:38:40 +02:00
Tamo
7fc35c5586
remove the useless prints 2022-08-02 10:31:22 +02:00
Tamo
f156d7dd3b
Stop reindexing already indexed documents 2022-08-02 10:31:20 +02:00
Loïc Lecrenier
07003704a8 Merge branch 'filter/field-exist' 2022-07-21 14:51:41 +02:00
Clémentine Urquizar
d5e9b7305b
Update version for next release (v0.32.0) 2022-07-21 13:20:02 +04:00
ManyTheFish
cbb3b25459 Fix(Search): Fix phrase search candidates computation
This bug is an old bug but was hidden by the proximity criterion,
Phrase search were always returning an empty candidates list.

Before the fix, we were trying to find any words[n] near words[n]
instead of finding  any words[n] near words[n+1], for example:

for a phrase search '"Hello world"' we were searching for "hello" near "hello" first, instead of "hello" near "world".
2022-07-21 10:04:30 +02:00
bors[bot]
941af58239
Merge #561
561: Enriched documents batch reader r=curquiza a=Kerollmops

~This PR is based on #555 and must be rebased on main after it has been merged to ease the review.~
This PR contains the work in #555 and can be merged on main as soon as reviewed and approved.

- [x] Create an `EnrichedDocumentsBatchReader` that contains the external documents id.
- [x] Extract the primary key name and make it accessible in the `EnrichedDocumentsBatchReader`.
- [x] Use the external id from the `EnrichedDocumentsBatchReader` in the `Transform::read_documents`.
- [x] Remove the `update_primary_key` from the _transform.rs_ file.
- [x] Really generate the auto-generated documents ids.
- [x] Insert the (auto-generated) document ids in the document while processing it in `Transform::read_documents`.

Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-07-21 07:08:50 +00:00
Loïc Lecrenier
41a0ce07cb
Add a code comment, as suggested in PR review
Co-authored-by: Many the fish <many@meilisearch.com>
2022-07-20 16:20:35 +02:00
Loïc Lecrenier
1506683705 Avoid using too much memory when indexing facet-exists-docids 2022-07-19 14:42:35 +02:00
Loïc Lecrenier
d0eee5ff7a Fix compiler error 2022-07-19 13:54:30 +02:00
Loïc Lecrenier
aed8c69bcb Refactor indexation of the "facet-id-exists-docids" database
The idea is to directly create a sorted and merged list of bitmaps
in the form of a BTreeMap<FieldId, RoaringBitmap> instead of creating
a grenad::Reader where the keys are field_id and the values are docids.

Then we send that BTreeMap to the thing that handles TypedChunks, which
inserts its content into the database.
2022-07-19 10:07:33 +02:00
Loïc Lecrenier
1eb1e73bb3 Add integration tests for the EXISTS filter 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
4f0bd317df Remove custom implementation of BytesEncode/Decode for the FieldId 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
80b962b4f4 Run cargo fmt 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
c17d616250 Refactor index_documents_check_exists_database tests 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
30bd4db0fc Simplify indexing task for facet_exists_docids database 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
392472f4bb Apply suggestions from code review
Co-authored-by: Tamo <tamo@meilisearch.com>
2022-07-19 10:07:33 +02:00
Loïc Lecrenier
0388b2d463 Run cargo fmt 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
dc64170a69 Improve syntax of EXISTS filter, allow “value NOT EXISTS” 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
72452f0cb2 Implements the EXIST filter operator 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
453d593ce8 Add a database containing the docids where each field exists 2022-07-19 10:07:33 +02:00
Many the fish
2d79720f5d
Update milli/src/search/matches/mod.rs 2022-07-18 17:48:04 +02:00
Many the fish
8ddb4e750b
Update milli/src/search/matches/mod.rs 2022-07-18 17:47:39 +02:00
Many the fish
a277daa1f2
Update milli/src/search/matches/mod.rs 2022-07-18 17:47:13 +02:00
Many the fish
fb794c6b5e
Update milli/src/search/matches/mod.rs 2022-07-18 17:46:00 +02:00
Many the fish
1237cfc249
Update milli/src/search/matches/mod.rs 2022-07-18 17:45:37 +02:00
Many the fish
d7fd5c58cd
Update milli/src/search/matches/mod.rs 2022-07-18 17:45:06 +02:00
Loïc Lecrenier
fc9f3f31e7 Change DocumentsBatchReader to access cursor and index at same time
Otherwise it is not possible to iterate over all documents while
using the fields index at the same time.
2022-07-18 16:08:14 +02:00
Loïc Lecrenier
ab1571cdec Simplify Transform::read_documents, enabled by enriched documents reader 2022-07-18 12:45:47 +02:00
Many the fish
e261ef64d7
Update milli/src/search/matches/mod.rs
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-07-18 10:18:51 +02:00