Commit Graph

1993 Commits

Author SHA1 Message Date
Loïc Lecrenier
7309111433 Don't run block code in doc tests of word_pair_proximity_docids 2022-08-17 12:17:18 +02:00
Loïc Lecrenier
f6f8f543e1 Run cargo fmt 2022-08-17 12:17:18 +02:00
Loïc Lecrenier
34c991ea02 Add newlines in documentation of word_prefix_pair_proximity_docids 2022-08-17 12:17:18 +02:00
Loïc Lecrenier
06f3fd8c6d Add more comments to WordPrefixPairProximityDocids::execute 2022-08-17 12:17:18 +02:00
Loïc Lecrenier
474500362c Update wpppd snapshots
New snapshot (yes, it's wrong as well, it will get fixed later):

---
source: milli/src/update/word_prefix_pair_proximity_docids.rs
---
5                a    1  [101, ]
5                a    2  [101, ]
5                am   1  [101, ]
5                b    4  [101, ]
5                be   4  [101, ]
am               a    3  [101, ]
amazing          a    1  [100, ]
amazing          a    2  [100, ]
amazing          a    3  [100, ]
amazing          an   1  [100, ]
amazing          an   2  [100, ]
amazing          b    2  [100, ]
amazing          be   2  [100, ]
an               a    1  [100, ]
an               a    2  [100, 202, ]
an               am   1  [100, ]
an               b    3  [100, ]
an               be   3  [100, ]
and              a    2  [100, ]
and              a    3  [100, ]
and              a    4  [100, ]
and              b    1  [100, ]
and              be   1  [100, ]
                 d\0  0  [100, 202, ]
an               an   2  [100, ]
and              am   2  [100, ]
and              an   3  [100, ]
at               a    2  [100, 101, ]
at               a    3  [100, ]
at               am   2  [100, 101, ]
at               an   1  [100, 202, ]
at               an   3  [100, ]
at               b    3  [101, ]
at               b    4  [100, ]
at               be   3  [101, ]
at               be   4  [100, ]
beautiful        a    2  [100, ]
beautiful        a    3  [100, ]
beautiful        a    4  [100, ]
beautiful        am   3  [100, ]
beautiful        an   2  [100, ]
beautiful        an   4  [100, ]
bell             a    2  [101, ]
bell             a    4  [101, ]
bell             am   4  [101, ]
extraordinary    a    2  [202, ]
extraordinary    a    3  [202, ]
extraordinary    an   2  [202, ]
house            a    4  [100, 202, ]
house            a    4  [100, ]
house            am   4  [100, ]
house            an   3  [100, 202, ]
house            b    2  [100, ]
house            be   2  [100, ]
rings            a    1  [101, ]
rings            a    3  [101, ]
rings            am   3  [101, ]
rings            b    2  [101, ]
rings            be   2  [101, ]
the              a    3  [101, ]
the              b    1  [101, ]
the              be   1  [101, ]
2022-08-17 12:17:18 +02:00
Loïc Lecrenier
ea4a96761c Move content of readme for WordPrefixPairProximityDocids into the code 2022-08-17 12:05:37 +02:00
Loïc Lecrenier
220921628b Simplify and document WordPrefixPairProximityDocIds::execute 2022-08-17 11:59:19 +02:00
Loïc Lecrenier
044356d221 Optimise WordPrefixPairProximityDocIds merge operation 2022-08-17 11:59:18 +02:00
Loïc Lecrenier
d350114159 Add tests for WordPrefixPairProximityDocIds 2022-08-17 11:59:15 +02:00
Loïc Lecrenier
86807ca848 Refactor word prefix pair proximity indexation further 2022-08-17 11:59:13 +02:00
Loïc Lecrenier
306593144d Refactor word prefix pair proximity indexation 2022-08-17 11:59:00 +02:00
Loïc Lecrenier
5d59bfde8a Sort Cargo.toml dependencies 2022-08-17 11:46:56 +02:00
bors[bot]
f55034ed54
Merge #606
606: Make binaries faster on release profile through better compile options r=Kerollmops a=loiclec

Using `codegen-units = 1` and `lto = 'thin'` makes the compile time a bit longer, but also produces faster binaries.

I'd like to run milli's benchmark with these options, so that we can see whether it is worth enabling on meilisearch.

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-17 08:57:24 +00:00
Loïc Lecrenier
03e679b634 Make binaries faster on release profile through better compile options 2022-08-17 10:29:33 +02:00
Loïc Lecrenier
f20e588ec1 Make sure there is one newline at eof in cargo.toml 2022-08-17 07:44:33 +02:00
Loïc Lecrenier
20be69e1b9 Always use mimalloc as the global allocator 2022-08-16 20:09:36 +02:00
bors[bot]
293a246af8
Merge #601
601: Introduce snapshot tests r=Kerollmops a=loiclec

# Pull Request
## What does this PR do?
Introduce snapshot tests into milli, by using the `insta` crate. This implements the idea described by #597 

See: [insta.rs](https://insta.rs)

## Design
There is now a new file, `snapshot_tests.rs`, which is compiled only under `#[cfg(test)]`. It exposes the `db_snap!` macro, which is used to snapshot the content of a database.

When running `cargo test`, `insta` will check that the value of the current snapshot is the same as the previous one (on the file system). If they are the same, the test passes. If they are different, the test fails and you are asked to review the new snapshot to approve or reject it.

We don't want to save very large snapshots to the file system, because it will pollute the git repository and increase its size too much. Instead, we only save their `md5` hashes under the name `<snapshot_name>.hash.snap`. There is a new environment variable called `MILLI_TEST_FULL_SNAPS` which can be set to `true` in order to *also* save the full content of the snapshot under the name `<snapshot_name>.full.snap`. However, snapshots with the extension `.full.snap` are never saved to the git repository.

## Example
```rust
// In e.g. facets.rs
#[test]
fn my_test() {
    // create an index
    let index = TempIndex::new():
    index.add_documents(...);
    index.update_settings(|settings| ...);
    
    // then snapshot the content of one of its databases
    // the snapshot will be saved at the current folder under facets.rs/my_test/facet_id_string_docids.snap
    db_snap!(index, facet_id_string_docids);

    index.add_documents(...);   

    // we can also name the snapshot to ensure there is no conflict
    // this snapshot will be saved at facets.rs/my_test/updated/facet_id_string_docids.snap
    db_snap!(index, facet_id_string, docids, "updated");
    
    // and we can also use "inline" snapshots, which insert their content in the given string literal
    db_snap!(index, field_distributions, `@"");`
    // once the snapshot is approved, it will automatically get transformed to, e.g.:
    // db_snap!(index, field_distributions, `@"`
    // my_facet        21
    // other_field     3
    // ");
    
    // now let's add **many** documents
    index.add_documents(...);
    
    // because the snapshot is too big, its hash is saved instead
    // if the MILLI_TEST_FULL_SNAPS env variable is set to true, then the full snapshot will also be saved
    // at facets.rs/my_test/large/facet_id_string_docids.full.snap
    db_snap!(index, facet_id_string_docids, "large", `@"5348bbc46b5384455b6a900666d2a502");`
}
```

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-16 11:57:09 +00:00
Loïc Lecrenier
dea00311b6 Add type annotations to remove compiler error 2022-08-16 09:19:30 +02:00
Loïc Lecrenier
fb2b6c0c28 Use mimalloc for benchmarks on all platforms 2022-08-10 16:56:42 +02:00
Loïc Lecrenier
6f49126223 Fix db_snap macro with inline parameter 2022-08-10 15:55:22 +02:00
Loïc Lecrenier
12920f2a4f Fix paths of snapshot tests 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
4b7fd4dfae Update insta version 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
ce560fdcb5 Add documentation for db_snap! 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
748bb86b5b cargo fmt 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
051f24f674 Switch to snapshot tests for search/matches/mod.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
d2e01528a6 Switch to snapshot tests for search/criteria/typo.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
a9c7d82693 Switch to snapshot tests for search/criteria/attribute.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
4bba2f41d7 Switch to snapshot tests for query_tree.rs 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
8ac24d3114 Cargo fmt + fix compiler warnings/error 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
6066256689 Add snapshot tests for indexing of word_prefix_pair_proximity_docids 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
3a734af159 Add snapshot tests for Facets::execute 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
b9907997e4 Remove old snapshot tests code 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
ef889ade5d Refactor snapshot tests 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
334098a7e0 Add index snapshot test helper function 2022-08-10 15:53:46 +02:00
Loïc Lecrenier
8f73251012 Use mimalloc for benchmarks on macOS 2022-08-10 13:30:56 +02:00
ManyTheFish
b389be48a0 Factorize phrase computation 2022-08-08 10:37:31 +02:00
bors[bot]
950d8e4c44
Merge #600
600: Simplify some unit tests r=ManyTheFish a=loiclec

# Pull Request

## What does this PR do?
Simplify the code that is used in unit tests to create and modify an index. Basically, the following code:
```rust
  let path = tempfile::tempdir().unwrap();
  let mut options = EnvOpenOptions::new();
  options.map_size(10 * 1024 * 1024); // 10 MB
  let index = Index::new(options, &path).unwrap();

  let mut wtxn = index.write_txn().unwrap();
  let content = documents!([
      { "id": 0, "name": "kevin" },
  ]);
  let config = IndexerConfig::default();
  let indexing_config = IndexDocumentsConfig::default();
  let builder =
      IndexDocuments::new(&mut wtxn, &index, &config, indexing_config, |_| ()).unwrap();
  let (builder, user_error) = builder.add_documents(content).unwrap();
  user_error.unwrap();
  builder.execute().unwrap();
  wtxn.commit.unwrap();

  let mut wtxn = index.write_txn().unwrap();
  let config = IndexerConfig::default();
  let mut builder = Settings::new(&mut wtxn, &index, &config);
  builder.set_primary_key(S("docid"));
  builder.set_filterable_fields(hashset! { S("label") });
  builder.execute(|_| ()).unwrap();
  wtxn.commit().unwrap();
```
becomes:
```rust
let index = TempIndex::new():
index.add_documents(documents!(
      { "id": 0, "name": "kevin" },
)).unwrap();
index.update_settings(|settings| {
    settings.set_primary_key(S("docid"));
    settings.set_filterable_fields(hashset! { S("label") });
}).unwrap();
```

Then there is a bunch of options to modify the indexing configs, the map size, to reuse a transaction, etc. For example:
```rust
let mut index = TempIndex::new_with_map_size(1000 * 4096 * 10);
index.index_documents_config.autogenerate_docids = true;
let mut wtxn = index.write_txn().unwrap();
index.update_settings_using_wtxn(&mut wtxn, |settings| {
    settings.set_primary_key(S("docids"));
}).unwrap();
wtxn.commit().unwrap();
```

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Co-authored-by: bors[bot] <26634292+bors[bot]@users.noreply.github.com>
2022-08-04 10:19:42 +00:00
Loïc Lecrenier
58cb1c1bda Simplify unit tests in facet/filter.rs 2022-08-04 12:03:44 +02:00
Loïc Lecrenier
acff17fb88 Simplify indexing tests 2022-08-04 12:03:13 +02:00
bors[bot]
21284cf235
Merge #556
556: Add EXISTS filter r=loiclec a=loiclec

## What does this PR do?

Fixes issue [#2484](https://github.com/meilisearch/meilisearch/issues/2484) in the meilisearch repo.

It creates a `field EXISTS` filter which selects all documents containing the `field` key. 
For example, with the following documents:
```json
[{
	"id": 0,
	"colour": []
},
{
	"id": 1,
	"colour": ["blue", "green"]
},
{
	"id": 2,
	"colour": 145238
},
{
	"id": 3,
	"colour": null
},
{
	"id": 4,
	"colour": {
		"green": []
	}
},
{
	"id": 5,
	"colour": {}
},
{
	"id": 6
}]
```
Then the filter `colour EXISTS` selects the ids `[0, 1, 2, 3, 4, 5]`. The filter `colour NOT EXISTS` selects `[6]`.

## Details
There is a new database named `facet-id-exists-docids`. Its keys are field ids and its values are bitmaps of all the document ids where the corresponding field exists.

To create this database, the indexing part of milli had to be adapted. The implementation there is basically copy/pasted from the code handling the `facet-id-f64-docids` database, with appropriate modifications in place.

There was an issue involving the flattening of documents during (re)indexing. Previously, the following JSON:
```json
{
    "id": 0,
    "colour": [],
    "size": {}
}
```
would be flattened to:
```json
{
    "id": 0
}
```
prior to being given to the extraction pipeline.

This transformation would lose the information that is needed to populate the `facet-id-exists-docids` database. Therefore, I have also changed the implementation of the `flatten-serde-json` crate. Now, as it traverses the Json, it keeps track of which key was encountered. Then, at the end, if a previously encountered key is not present in the flattened object, it adds that key to the object with an empty array as value. For example:
```json
{
    "id": 0,
    "colour": {
        "green": [],
        "blue": 1
    },
    "size": {}
} 
```
becomes
```json
{
    "id": 0,
    "colour": [],
    "colour.green": [],
    "colour.blue": 1,
    "size": []
} 
```


Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-08-04 09:46:06 +00:00
bors[bot]
50f6524ff2
Merge #579
579: Stop reindexing already indexed documents r=ManyTheFish a=irevoire

```
 % ./compare.sh indexing_stop-reindexing-unchanged-documents_cb5a1669.json indexing_main_eeba1960.json
group                                                                     indexing_main_eeba1960                 indexing_stop-reindexing-unchanged-documents_cb5a1669
-----                                                                     ----------------------                 -----------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.03      2.0±0.22ms        ? ?/sec    1.00  1955.4±336.24µs        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.08     11.0±2.93ms        ? ?/sec    1.00     10.2±4.04ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.00     15.1±3.89ms        ? ?/sec    1.14     17.1±5.18ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.26    59.2±12.01ms        ? ?/sec    1.00     47.1±8.52ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.08   316.6±31.53ms        ? ?/sec    1.00   293.6±17.00ms        ? ?/sec
indexing/Indexing geo_point                                               1.01      60.9±0.31s        ? ?/sec    1.00      60.6±0.36s        ? ?/sec
indexing/Indexing movies in three batches                                 1.04      20.0±0.30s        ? ?/sec    1.00      19.2±0.25s        ? ?/sec
indexing/Indexing movies with default settings                            1.02      19.1±0.18s        ? ?/sec    1.00      18.7±0.24s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.02      26.2±0.29s        ? ?/sec    1.00      25.9±0.22s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.02      25.3±0.32s        ? ?/sec    1.00      24.7±0.26s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.00      66.7±0.41s        ? ?/sec    1.01      67.1±0.86s        ? ?/sec
indexing/Indexing songs with default settings                             1.00      58.3±0.90s        ? ?/sec    1.01      58.8±1.32s        ? ?/sec
indexing/Indexing songs without any facets                                1.00      54.5±1.43s        ? ?/sec    1.01      55.2±1.29s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.00      57.9±1.20s        ? ?/sec    1.01      58.4±0.93s        ? ?/sec
indexing/Indexing wiki                                                    1.00   1052.0±10.95s        ? ?/sec    1.02   1069.4±20.38s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.00    1193.1±8.83s        ? ?/sec    1.00    1189.5±9.40s        ? ?/sec
indexing/Reindexing geo_point                                             3.22      67.5±0.73s        ? ?/sec    1.00      21.0±0.16s        ? ?/sec
indexing/Reindexing movies with default settings                          3.75      19.4±0.28s        ? ?/sec    1.00       5.2±0.05s        ? ?/sec
indexing/Reindexing songs with default settings                           8.90      61.4±0.91s        ? ?/sec    1.00       6.9±0.07s        ? ?/sec
indexing/Reindexing wiki                                                  1.00   1748.2±35.68s        ? ?/sec    1.00   1750.5±18.53s        ? ?/sec
```

tldr: We do not lose any performance on the normal indexing benchmark, but we get between 3 and 8 times faster on the reindexing benchmarks 👍 

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-08-04 08:10:37 +00:00
bors[bot]
e8987cf5aa
Merge #599
599: fix: Remove whitespace trimming during document id validation r=ManyTheFish a=ManyTheFish

fix #592


related to https://github.com/meilisearch/meilisearch/issues/2640


Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-08-03 14:55:25 +00:00
ManyTheFish
d6f9a60a32 fix: Remove whitespace trimming during document id validation
fix #592
2022-08-03 11:38:40 +02:00
Tamo
7fc35c5586
remove the useless prints 2022-08-02 10:31:22 +02:00
Tamo
f156d7dd3b
Stop reindexing already indexed documents 2022-08-02 10:31:20 +02:00
Loïc Lecrenier
1fe224f2c6
Update filter-parser/fuzz/.gitignore
Co-authored-by: Many the fish <many@meilisearch.com>
2022-07-21 16:12:01 +02:00
Loïc Lecrenier
07003704a8 Merge branch 'filter/field-exist' 2022-07-21 14:51:41 +02:00
bors[bot]
e1bc610d27
Merge #595
595: Update version for next release (v0.32.0) r=ManyTheFish a=curquiza

In order to release on `main` (for v0.29.0, not v0.28.1)

<img width="1014" alt="Capture d’écran 2022-07-21 à 13 20 35" src="https://user-images.githubusercontent.com/20380692/180178725-381fbdf1-c0fb-4fa9-9954-452aec5a1574.png">


Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
2022-07-21 11:07:42 +00:00
Clémentine Urquizar
d5e9b7305b
Update version for next release (v0.32.0) 2022-07-21 13:20:02 +04:00
ManyTheFish
cbb3b25459 Fix(Search): Fix phrase search candidates computation
This bug is an old bug but was hidden by the proximity criterion,
Phrase search were always returning an empty candidates list.

Before the fix, we were trying to find any words[n] near words[n]
instead of finding  any words[n] near words[n+1], for example:

for a phrase search '"Hello world"' we were searching for "hello" near "hello" first, instead of "hello" near "world".
2022-07-21 10:04:30 +02:00