mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-19 01:18:31 +08:00
Merge #662
662: Enhance word splitting strategy r=ManyTheFish a=akki1306
# Pull Request
## Related issue
Fixes #648
## What does this PR do?
- [split_best_frequency](55d889522b/milli/src/search/query_tree.rs (L282-L301)
) to use frequency of word pairs near together with proximity value of 1 instead of considering the frequency of individual words. Word pairs having max frequency are considered.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Akshay Kulkarni <akshayk.gj@gmail.com>
This commit is contained in:
commit
f30979d021
65
milli/src/search/query_tree.rs
Normal file → Executable file
65
milli/src/search/query_tree.rs
Normal file → Executable file
@ -1,6 +1,6 @@
|
|||||||
use std::borrow::Cow;
|
use std::borrow::Cow;
|
||||||
use std::cmp::max;
|
use std::cmp::max;
|
||||||
use std::{cmp, fmt, mem};
|
use std::{fmt, mem};
|
||||||
|
|
||||||
use charabia::classifier::ClassifiedTokenIter;
|
use charabia::classifier::ClassifiedTokenIter;
|
||||||
use charabia::{SeparatorKind, TokenKind};
|
use charabia::{SeparatorKind, TokenKind};
|
||||||
@ -10,7 +10,7 @@ use slice_group_by::GroupBy;
|
|||||||
|
|
||||||
use crate::search::matches::matching_words::{MatchingWord, PrimitiveWordId};
|
use crate::search::matches::matching_words::{MatchingWord, PrimitiveWordId};
|
||||||
use crate::search::TermsMatchingStrategy;
|
use crate::search::TermsMatchingStrategy;
|
||||||
use crate::{Index, MatchingWords, Result};
|
use crate::{CboRoaringBitmapLenCodec, Index, MatchingWords, Result};
|
||||||
|
|
||||||
type IsOptionalWord = bool;
|
type IsOptionalWord = bool;
|
||||||
type IsPrefix = bool;
|
type IsPrefix = bool;
|
||||||
@ -156,6 +156,12 @@ trait Context {
|
|||||||
/// Returns the minimum word len for 1 and 2 typos.
|
/// Returns the minimum word len for 1 and 2 typos.
|
||||||
fn min_word_len_for_typo(&self) -> heed::Result<(u8, u8)>;
|
fn min_word_len_for_typo(&self) -> heed::Result<(u8, u8)>;
|
||||||
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>>;
|
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>>;
|
||||||
|
fn word_pair_frequency(
|
||||||
|
&self,
|
||||||
|
left_word: &str,
|
||||||
|
right_word: &str,
|
||||||
|
proximity: u8,
|
||||||
|
) -> heed::Result<Option<u64>>;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The query tree builder is the interface to build a query tree.
|
/// The query tree builder is the interface to build a query tree.
|
||||||
@ -190,6 +196,19 @@ impl<'a> Context for QueryTreeBuilder<'a> {
|
|||||||
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
|
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
|
||||||
self.exact_words.as_ref()
|
self.exact_words.as_ref()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn word_pair_frequency(
|
||||||
|
&self,
|
||||||
|
left_word: &str,
|
||||||
|
right_word: &str,
|
||||||
|
proximity: u8,
|
||||||
|
) -> heed::Result<Option<u64>> {
|
||||||
|
let key = (left_word, right_word, proximity);
|
||||||
|
self.index
|
||||||
|
.word_pair_proximity_docids
|
||||||
|
.remap_data_type::<CboRoaringBitmapLenCodec>()
|
||||||
|
.get(&self.rtxn, &key)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'a> QueryTreeBuilder<'a> {
|
impl<'a> QueryTreeBuilder<'a> {
|
||||||
@ -263,7 +282,7 @@ impl<'a> QueryTreeBuilder<'a> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Split the word depending on the frequency of subwords in the database documents.
|
/// Split the word depending on the frequency of pairs near together in the database documents.
|
||||||
fn split_best_frequency<'a>(
|
fn split_best_frequency<'a>(
|
||||||
ctx: &impl Context,
|
ctx: &impl Context,
|
||||||
word: &'a str,
|
word: &'a str,
|
||||||
@ -274,12 +293,10 @@ fn split_best_frequency<'a>(
|
|||||||
for (i, _) in chars {
|
for (i, _) in chars {
|
||||||
let (left, right) = word.split_at(i);
|
let (left, right) = word.split_at(i);
|
||||||
|
|
||||||
let left_freq = ctx.word_documents_count(left)?.unwrap_or(0);
|
let pair_freq = ctx.word_pair_frequency(left, right, 1)?.unwrap_or(0);
|
||||||
let right_freq = ctx.word_documents_count(right)?.unwrap_or(0);
|
|
||||||
|
|
||||||
let min_freq = cmp::min(left_freq, right_freq);
|
if pair_freq != 0 && best.map_or(true, |(old, _, _)| pair_freq > old) {
|
||||||
if min_freq != 0 && best.map_or(true, |(old, _, _)| min_freq > old) {
|
best = Some((pair_freq, left, right));
|
||||||
best = Some((min_freq, left, right));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -836,6 +853,18 @@ mod test {
|
|||||||
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
|
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
|
||||||
self.exact_words.as_ref()
|
self.exact_words.as_ref()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn word_pair_frequency(
|
||||||
|
&self,
|
||||||
|
left_word: &str,
|
||||||
|
right_word: &str,
|
||||||
|
_proximity: u8,
|
||||||
|
) -> heed::Result<Option<u64>> {
|
||||||
|
match self.word_docids(&format!("{} {}", left_word, right_word))? {
|
||||||
|
Some(rb) => Ok(Some(rb.len())),
|
||||||
|
None => Ok(None),
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Default for TestContext {
|
impl Default for TestContext {
|
||||||
@ -894,6 +923,9 @@ mod test {
|
|||||||
String::from("this") => random_postings(rng, 50_000),
|
String::from("this") => random_postings(rng, 50_000),
|
||||||
String::from("good") => random_postings(rng, 1250),
|
String::from("good") => random_postings(rng, 1250),
|
||||||
String::from("morning") => random_postings(rng, 125),
|
String::from("morning") => random_postings(rng, 125),
|
||||||
|
String::from("word split") => random_postings(rng, 5000),
|
||||||
|
String::from("quick brownfox") => random_postings(rng, 7000),
|
||||||
|
String::from("quickbrown fox") => random_postings(rng, 8000),
|
||||||
},
|
},
|
||||||
exact_words,
|
exact_words,
|
||||||
}
|
}
|
||||||
@ -1041,6 +1073,23 @@ mod test {
|
|||||||
"###);
|
"###);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn word_split_choose_pair_with_max_freq() {
|
||||||
|
let query = "quickbrownfox";
|
||||||
|
let tokens = query.tokenize();
|
||||||
|
|
||||||
|
let (query_tree, _) = TestContext::default()
|
||||||
|
.build(TermsMatchingStrategy::All, true, None, tokens)
|
||||||
|
.unwrap()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
insta::assert_debug_snapshot!(query_tree, @r###"
|
||||||
|
OR
|
||||||
|
PHRASE ["quickbrown", "fox"]
|
||||||
|
PrefixTolerant { word: "quickbrownfox", max typo: 2 }
|
||||||
|
"###);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn phrase() {
|
fn phrase() {
|
||||||
let query = "\"hey friends\" \" \" \"wooop";
|
let query = "\"hey friends\" \" \" \"wooop";
|
||||||
|
Loading…
Reference in New Issue
Block a user