mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-23 02:27:40 +08:00
Use the Typo criteria in the search module
This commit is contained in:
parent
ad20d72a39
commit
f091f370d0
@ -18,10 +18,13 @@ use crate::heed_codec::facet::{FacetLevelValueF64Codec, FacetLevelValueI64Codec}
|
||||
use crate::heed_codec::facet::{FieldDocIdFacetF64Codec, FieldDocIdFacetI64Codec};
|
||||
use crate::mdfs::Mdfs;
|
||||
use crate::query_tokens::{query_tokens, QueryToken};
|
||||
use crate::{Index, FieldId, DocumentId, Criterion};
|
||||
use crate::search::criteria::Criterion;
|
||||
use crate::search::criteria::typo::Typo;
|
||||
use crate::{Index, FieldId, DocumentId};
|
||||
|
||||
pub use self::facet::{FacetCondition, FacetDistribution, FacetNumberOperator, FacetStringOperator};
|
||||
pub use self::facet::{FacetIter};
|
||||
use self::query_tree::QueryTreeBuilder;
|
||||
|
||||
// Building these factories is not free.
|
||||
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
||||
@ -30,6 +33,7 @@ static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
||||
|
||||
mod facet;
|
||||
mod query_tree;
|
||||
mod criteria;
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
@ -258,15 +262,22 @@ impl<'a> Search<'a> {
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> anyhow::Result<SearchResult> {
|
||||
let limit = self.limit;
|
||||
let fst = self.index.words_fst(self.rtxn)?;
|
||||
|
||||
// Construct the DFAs related to the query words.
|
||||
let derived_words = match self.query.as_deref().map(Self::generate_query_dfas) {
|
||||
Some(dfas) if !dfas.is_empty() => Some(self.fetch_words_docids(&fst, dfas)?),
|
||||
_otherwise => None,
|
||||
// We create the query tree by spliting the query into tokens.
|
||||
let before = Instant::now();
|
||||
let query_tree = match self.query.as_ref() {
|
||||
Some(query) => {
|
||||
let builder = QueryTreeBuilder::new(self.rtxn, self.index);
|
||||
let stop_words = &Set::default();
|
||||
let analyzer = Analyzer::new(AnalyzerConfig::default_with_stopwords(stop_words));
|
||||
let result = analyzer.analyze(query);
|
||||
let tokens = result.tokens();
|
||||
builder.build(false, true, tokens)
|
||||
},
|
||||
None => None,
|
||||
};
|
||||
|
||||
debug!("query tree: {:?} took {:.02?}", query_tree, before.elapsed());
|
||||
|
||||
// We create the original candidates with the facet conditions results.
|
||||
let before = Instant::now();
|
||||
let facet_candidates = match &self.facet_condition {
|
||||
@ -276,100 +287,129 @@ impl<'a> Search<'a> {
|
||||
|
||||
debug!("facet candidates: {:?} took {:.02?}", facet_candidates, before.elapsed());
|
||||
|
||||
let order_by_facet = {
|
||||
let criteria = self.index.criteria(self.rtxn)?;
|
||||
let result = criteria.into_iter().flat_map(|criterion| {
|
||||
match criterion {
|
||||
Criterion::Asc(fid) => Some((fid, true)),
|
||||
Criterion::Desc(fid) => Some((fid, false)),
|
||||
_ => None
|
||||
}
|
||||
}).next();
|
||||
match result {
|
||||
Some((attr_name, is_ascending)) => {
|
||||
let field_id_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
let fid = field_id_map.id(&attr_name).with_context(|| format!("unknown field: {:?}", attr_name))?;
|
||||
let faceted_fields = self.index.faceted_fields_ids(self.rtxn)?;
|
||||
let ftype = *faceted_fields.get(&fid)
|
||||
.with_context(|| format!("{:?} not found in the faceted fields.", attr_name))
|
||||
.expect("corrupted data: ");
|
||||
Some((fid, ftype, is_ascending))
|
||||
},
|
||||
None => None,
|
||||
// We aretesting the typo criteria but there will be more of them soon.
|
||||
let mut criteria = Typo::initial(self.index, self.rtxn, query_tree, facet_candidates)?;
|
||||
|
||||
let mut offset = self.offset;
|
||||
let mut limit = self.limit;
|
||||
let mut documents_ids = Vec::new();
|
||||
while let Some((_qt, docids)) = criteria.next()? {
|
||||
|
||||
let mut len = docids.len() as usize;
|
||||
let mut docids = docids.into_iter();
|
||||
|
||||
if offset != 0 {
|
||||
docids.by_ref().skip(offset).for_each(drop);
|
||||
offset = offset.saturating_sub(len.min(offset));
|
||||
len = len.saturating_sub(len.min(offset));
|
||||
}
|
||||
};
|
||||
|
||||
let before = Instant::now();
|
||||
let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
(Some(mut facet_candidates), Some(derived_words)) => {
|
||||
let words_candidates = Self::compute_candidates(&derived_words);
|
||||
facet_candidates.intersect_with(&words_candidates);
|
||||
(facet_candidates, derived_words)
|
||||
},
|
||||
(None, Some(derived_words)) => {
|
||||
(Self::compute_candidates(&derived_words), derived_words)
|
||||
},
|
||||
(Some(facet_candidates), None) => {
|
||||
// If the query is not set or results in no DFAs but
|
||||
// there is some facet conditions we return a placeholder.
|
||||
let documents_ids = match order_by_facet {
|
||||
Some((fid, ftype, is_ascending)) => {
|
||||
self.facet_ordered(fid, ftype, is_ascending, facet_candidates.clone(), limit)?
|
||||
},
|
||||
None => facet_candidates.iter().take(limit).collect(),
|
||||
};
|
||||
return Ok(SearchResult {
|
||||
documents_ids,
|
||||
candidates: facet_candidates,
|
||||
..Default::default()
|
||||
})
|
||||
},
|
||||
(None, None) => {
|
||||
// If the query is not set or results in no DFAs we return a placeholder.
|
||||
let all_docids = self.index.documents_ids(self.rtxn)?;
|
||||
let documents_ids = match order_by_facet {
|
||||
Some((fid, ftype, is_ascending)) => {
|
||||
self.facet_ordered(fid, ftype, is_ascending, all_docids.clone(), limit)?
|
||||
},
|
||||
None => all_docids.iter().take(limit).collect(),
|
||||
};
|
||||
return Ok(SearchResult { documents_ids, candidates: all_docids,..Default::default() })
|
||||
},
|
||||
};
|
||||
|
||||
debug!("candidates: {:?} took {:.02?}", candidates, before.elapsed());
|
||||
|
||||
// The mana depth first search is a revised DFS that explore
|
||||
// solutions in the order of their proximities.
|
||||
let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates.clone());
|
||||
let mut documents = Vec::new();
|
||||
|
||||
// We execute the Mdfs iterator until we find enough documents.
|
||||
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
match mdfs.next().transpose()? {
|
||||
Some((proximity, answer)) => {
|
||||
debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
documents.push(answer);
|
||||
},
|
||||
None => break,
|
||||
if len != 0 {
|
||||
documents_ids.extend(docids.take(limit));
|
||||
limit = limit.saturating_sub(len.min(limit));
|
||||
}
|
||||
|
||||
if limit == 0 { break }
|
||||
}
|
||||
|
||||
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
let documents_ids = match order_by_facet {
|
||||
Some((fid, ftype, order)) => {
|
||||
let mut ordered_documents = Vec::new();
|
||||
for documents_ids in documents {
|
||||
let docids = self.facet_ordered(fid, ftype, order, documents_ids, limit)?;
|
||||
ordered_documents.push(docids);
|
||||
if ordered_documents.iter().map(Vec::len).sum::<usize>() >= limit { break }
|
||||
}
|
||||
ordered_documents.into_iter().flatten().take(limit).collect()
|
||||
},
|
||||
None => documents.into_iter().flatten().take(limit).collect(),
|
||||
};
|
||||
|
||||
let found_words = HashSet::new();
|
||||
let candidates = RoaringBitmap::new();
|
||||
Ok(SearchResult { found_words, candidates, documents_ids })
|
||||
|
||||
// let order_by_facet = {
|
||||
// let criteria = self.index.criteria(self.rtxn)?;
|
||||
// let result = criteria.into_iter().flat_map(|criterion| {
|
||||
// match criterion {
|
||||
// Criterion::Asc(fid) => Some((fid, true)),
|
||||
// Criterion::Desc(fid) => Some((fid, false)),
|
||||
// _ => None
|
||||
// }
|
||||
// }).next();
|
||||
// match result {
|
||||
// Some((attr_name, is_ascending)) => {
|
||||
// let field_id_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
// let fid = field_id_map.id(&attr_name).with_context(|| format!("unknown field: {:?}", attr_name))?;
|
||||
// let faceted_fields = self.index.faceted_fields_ids(self.rtxn)?;
|
||||
// let ftype = *faceted_fields.get(&fid)
|
||||
// .with_context(|| format!("{:?} not found in the faceted fields.", attr_name))
|
||||
// .expect("corrupted data: ");
|
||||
// Some((fid, ftype, is_ascending))
|
||||
// },
|
||||
// None => None,
|
||||
// }
|
||||
// };
|
||||
|
||||
// let before = Instant::now();
|
||||
// let (candidates, derived_words) = match (facet_candidates, derived_words) {
|
||||
// (Some(mut facet_candidates), Some(derived_words)) => {
|
||||
// let words_candidates = Self::compute_candidates(&derived_words);
|
||||
// facet_candidates.intersect_with(&words_candidates);
|
||||
// (facet_candidates, derived_words)
|
||||
// },
|
||||
// (None, Some(derived_words)) => {
|
||||
// (Self::compute_candidates(&derived_words), derived_words)
|
||||
// },
|
||||
// (Some(facet_candidates), None) => {
|
||||
// // If the query is not set or results in no DFAs but
|
||||
// // there is some facet conditions we return a placeholder.
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, is_ascending)) => {
|
||||
// self.facet_ordered(fid, ftype, is_ascending, facet_candidates.clone(), limit)?
|
||||
// },
|
||||
// None => facet_candidates.iter().take(limit).collect(),
|
||||
// };
|
||||
// return Ok(SearchResult {
|
||||
// documents_ids,
|
||||
// candidates: facet_candidates,
|
||||
// ..Default::default()
|
||||
// })
|
||||
// },
|
||||
// (None, None) => {
|
||||
// // If the query is not set or results in no DFAs we return a placeholder.
|
||||
// let all_docids = self.index.documents_ids(self.rtxn)?;
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, is_ascending)) => {
|
||||
// self.facet_ordered(fid, ftype, is_ascending, all_docids.clone(), limit)?
|
||||
// },
|
||||
// None => all_docids.iter().take(limit).collect(),
|
||||
// };
|
||||
// return Ok(SearchResult { documents_ids, candidates: all_docids,..Default::default() })
|
||||
// },
|
||||
// };
|
||||
|
||||
// debug!("candidates: {:?} took {:.02?}", candidates, before.elapsed());
|
||||
|
||||
// // The mana depth first search is a revised DFS that explore
|
||||
// // solutions in the order of their proximities.
|
||||
// let mut mdfs = Mdfs::new(self.index, self.rtxn, &derived_words, candidates.clone());
|
||||
// let mut documents = Vec::new();
|
||||
|
||||
// // We execute the Mdfs iterator until we find enough documents.
|
||||
// while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
|
||||
// match mdfs.next().transpose()? {
|
||||
// Some((proximity, answer)) => {
|
||||
// debug!("answer with a proximity of {}: {:?}", proximity, answer);
|
||||
// documents.push(answer);
|
||||
// },
|
||||
// None => break,
|
||||
// }
|
||||
// }
|
||||
|
||||
// let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
|
||||
// let documents_ids = match order_by_facet {
|
||||
// Some((fid, ftype, order)) => {
|
||||
// let mut ordered_documents = Vec::new();
|
||||
// for documents_ids in documents {
|
||||
// let docids = self.facet_ordered(fid, ftype, order, documents_ids, limit)?;
|
||||
// ordered_documents.push(docids);
|
||||
// if ordered_documents.iter().map(Vec::len).sum::<usize>() >= limit { break }
|
||||
// }
|
||||
// ordered_documents.into_iter().flatten().take(limit).collect()
|
||||
// },
|
||||
// None => documents.into_iter().flatten().take(limit).collect(),
|
||||
// };
|
||||
|
||||
// Ok(SearchResult { found_words, candidates, documents_ids })
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user