Index the intra documents word pair proximities

This commit is contained in:
Clément Renault 2020-09-22 14:04:33 +02:00
parent 7b67ae6972
commit d6fa9c0414
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4
5 changed files with 85 additions and 5 deletions

1
Cargo.lock generated
View File

@ -968,6 +968,7 @@ dependencies = [
"fst", "fst",
"fxhash", "fxhash",
"heed", "heed",
"itertools",
"jemallocator", "jemallocator",
"levenshtein_automata", "levenshtein_automata",
"log 0.4.11", "log 0.4.11",

View File

@ -30,6 +30,9 @@ smallvec = "1.4.0"
structopt = { version = "0.3.14", default-features = false } structopt = { version = "0.3.14", default-features = false }
tempfile = "3.1.0" tempfile = "3.1.0"
# documents words self-join
itertools = "0.9.0"
# logging # logging
log = "0.4.11" log = "0.4.11"
stderrlog = "0.4.3" stderrlog = "0.4.3"

View File

@ -37,6 +37,7 @@ const WORDS_FST_KEY: &[u8] = b"\x06words-fst";
const HEADERS_BYTE: u8 = 0; const HEADERS_BYTE: u8 = 0;
const WORD_DOCID_POSITIONS_BYTE: u8 = 1; const WORD_DOCID_POSITIONS_BYTE: u8 = 1;
const WORD_DOCIDS_BYTE: u8 = 2; const WORD_DOCIDS_BYTE: u8 = 2;
const WORDS_PROXIMITIES_BYTE: u8 = 5;
const DOCUMENTS_IDS_BYTE: u8 = 4; const DOCUMENTS_IDS_BYTE: u8 = 4;
#[cfg(target_os = "linux")] #[cfg(target_os = "linux")]
@ -128,6 +129,35 @@ fn create_writer(type_: CompressionType, level: Option<u32>, file: File) -> Writ
builder.build(file) builder.build(file)
} }
fn compute_words_pair_proximities(
word_positions: &HashMap<String, RoaringBitmap>,
) -> HashMap<(&str, &str), RoaringBitmap>
{
use itertools::Itertools;
let mut words_pair_proximities = HashMap::new();
for (w1, w2) in word_positions.keys().cartesian_product(word_positions.keys()) {
let mut distances = RoaringBitmap::new();
let positions1: Vec<_> = word_positions[w1].iter().collect();
let positions2: Vec<_> = word_positions[w2].iter().collect();
for (ps1, ps2) in positions1.iter().cartesian_product(positions2.iter()) {
let prox = milli::proximity::positions_proximity(*ps1, *ps2);
// We don't care about a word that appear at the
// same position or too far from the other.
if prox > 0 && prox < 8 { distances.insert(prox); }
}
if !distances.is_empty() {
// We only store the proximites under one word pair.
let (w1, w2) = if w1 > w2 { (w2, w1) } else { (w1, w2) };
words_pair_proximities.entry((w1.as_str(), w2.as_str()))
.or_insert_with(RoaringBitmap::new)
.union_with(&distances);
}
}
words_pair_proximities
}
type MergeFn = fn(&[u8], &[Vec<u8>]) -> Result<Vec<u8>, ()>; type MergeFn = fn(&[u8], &[Vec<u8>]) -> Result<Vec<u8>, ()>;
struct Store { struct Store {
@ -213,6 +243,43 @@ impl Store {
Ok(()) Ok(())
} }
// FIXME We must store those pairs in an ArcCache to reduce the number of I/O operations,
// We must store the documents ids associated with the words pairs and proximities.
fn write_words_proximities(
sorter: &mut Sorter<MergeFn>,
document_id: DocumentId,
words_pair_proximities: &HashMap<(&str, &str), RoaringBitmap>,
) -> anyhow::Result<()>
{
// words proximities keys are all prefixed
let mut key = vec![WORDS_PROXIMITIES_BYTE];
let mut buffer = Vec::new();
for ((w1, w2), proximities) in words_pair_proximities {
assert!(w1 <= w2);
key.truncate(1);
key.extend_from_slice(w1.as_bytes());
key.push(0);
key.extend_from_slice(w2.as_bytes());
let pair_len = key.len();
for prox in proximities {
key.truncate(pair_len);
key.push(u8::try_from(prox).unwrap());
// We serialize the document ids into a buffer
buffer.clear();
let ids = RoaringBitmap::from_iter(Some(document_id));
buffer.reserve(ids.serialized_size());
ids.serialize_into(&mut buffer)?;
// that we write under the generated key into MTBL
if lmdb_key_valid_size(&key) {
sorter.insert(&key, &buffer)?;
}
}
}
Ok(())
}
fn write_docid_word_positions( fn write_docid_word_positions(
sorter: &mut Sorter<MergeFn>, sorter: &mut Sorter<MergeFn>,
id: DocumentId, id: DocumentId,
@ -307,6 +374,9 @@ impl Store {
} }
} }
let words_pair_proximities = compute_words_pair_proximities(&word_positions);
Self::write_words_proximities(&mut self.sorter, document_id, &words_pair_proximities)?;
// We write the document in the documents store. // We write the document in the documents store.
self.write_document(document_id, &word_positions, &document)?; self.write_document(document_id, &word_positions, &document)?;
word_positions.clear(); word_positions.clear();
@ -386,7 +456,7 @@ fn merge(key: &[u8], values: &[Vec<u8>]) -> Result<Vec<u8>, ()> {
assert!(values.windows(2).all(|vs| vs[0] == vs[1])); assert!(values.windows(2).all(|vs| vs[0] == vs[1]));
Ok(values[0].to_vec()) Ok(values[0].to_vec())
}, },
DOCUMENTS_IDS_BYTE | WORD_DOCIDS_BYTE => { DOCUMENTS_IDS_BYTE | WORD_DOCIDS_BYTE | WORDS_PROXIMITIES_BYTE => {
let (head, tail) = values.split_first().unwrap(); let (head, tail) = values.split_first().unwrap();
let mut head = RoaringBitmap::deserialize_from(head.as_slice()).unwrap(); let mut head = RoaringBitmap::deserialize_from(head.as_slice()).unwrap();
@ -428,6 +498,10 @@ fn lmdb_writer(wtxn: &mut heed::RwTxn, index: &Index, key: &[u8], val: &[u8]) ->
// Write the postings lists // Write the postings lists
index.docid_word_positions.as_polymorph() index.docid_word_positions.as_polymorph()
.put::<_, ByteSlice, ByteSlice>(wtxn, &key[1..], val)?; .put::<_, ByteSlice, ByteSlice>(wtxn, &key[1..], val)?;
} else if key.starts_with(&[WORDS_PROXIMITIES_BYTE]) {
// Write the word pair proximity document ids
index.word_pair_proximity_docids.as_polymorph()
.put::<_, ByteSlice, ByteSlice>(wtxn, &key[1..], val)?;
} }
Ok(()) Ok(())

View File

@ -17,8 +17,8 @@ use heed::{PolyDatabase, Database};
pub use self::search::{Search, SearchResult}; pub use self::search::{Search, SearchResult};
pub use self::criterion::{Criterion, default_criteria}; pub use self::criterion::{Criterion, default_criteria};
pub use self::heed_codec::{ pub use self::heed_codec::{
RoaringBitmapCodec, BEU32StrCodec, CsvStringRecordCodec, RoaringBitmapCodec, BEU32StrCodec, StrStrU8Codec,
ByteorderXRoaringBitmapCodec, CsvStringRecordCodec, ByteorderXRoaringBitmapCodec,
}; };
pub type FastMap4<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher32>>; pub type FastMap4<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher32>>;
@ -45,6 +45,8 @@ pub struct Index {
pub docid_word_positions: Database<BEU32StrCodec, ByteorderXRoaringBitmapCodec>, pub docid_word_positions: Database<BEU32StrCodec, ByteorderXRoaringBitmapCodec>,
/// Maps the document id to the document as a CSV line. /// Maps the document id to the document as a CSV line.
pub documents: Database<OwnedType<BEU32>, ByteSlice>, pub documents: Database<OwnedType<BEU32>, ByteSlice>,
/// Maps the proximity between a pair of words with all the docids where this relation appears.
pub word_pair_proximity_docids: Database<StrStrU8Codec, RoaringBitmapCodec>,
} }
impl Index { impl Index {
@ -54,6 +56,7 @@ impl Index {
word_docids: env.create_database(Some("word-docids"))?, word_docids: env.create_database(Some("word-docids"))?,
docid_word_positions: env.create_database(Some("docid-word-positions"))?, docid_word_positions: env.create_database(Some("docid-word-positions"))?,
documents: env.create_database(Some("documents"))?, documents: env.create_database(Some("documents"))?,
word_pair_proximity_docids: env.create_database(Some("word-pair-proximity-docids"))?,
}) })
} }

View File

@ -1,5 +1,4 @@
use std::collections::{HashMap, HashSet}; use std::collections::{HashMap, HashSet};
use std::cmp;
use fst::{IntoStreamer, Streamer}; use fst::{IntoStreamer, Streamer};
use levenshtein_automata::DFA; use levenshtein_automata::DFA;
@ -12,7 +11,7 @@ use near_proximity::near_proximity;
use crate::proximity::path_proximity; use crate::proximity::path_proximity;
use crate::query_tokens::{QueryTokens, QueryToken}; use crate::query_tokens::{QueryTokens, QueryToken};
use crate::{Index, DocumentId, Position}; use crate::{Index, DocumentId};
// Building these factories is not free. // Building these factories is not free.
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true)); static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));