Introduce the mana depth first search algorithm

This commit is contained in:
Kerollmops 2020-10-01 15:13:14 +02:00 committed by Clément Renault
parent f6a8096720
commit d4e80407e5
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4

View File

@ -132,6 +132,14 @@ impl<'a> Search<'a> {
candidates
}
// TODO Move this elsewhere!
fn mana_depth_first_search(
&self,
words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
candidates: &RoaringBitmap,
union_cache: &mut HashMap<(usize, u8), RoaringBitmap>,
) -> anyhow::Result<Option<RoaringBitmap>>
{
fn words_pair_combinations<'h>(
w1: &'h HashMap<String, (u8, RoaringBitmap)>,
w2: &'h HashMap<String, (u8, RoaringBitmap)>,
@ -148,18 +156,34 @@ impl<'a> Search<'a> {
pairs
}
fn depth_first_search(
&self,
fn mdfs(
index: &Index,
rtxn: &heed::RoTxn,
mana: u32,
words: &[(HashMap<String, (u8, RoaringBitmap)>, RoaringBitmap)],
candidates: &RoaringBitmap,
parent_docids: &RoaringBitmap,
union_cache: &mut HashMap<(usize, u8), RoaringBitmap>,
) -> anyhow::Result<Option<RoaringBitmap>>
{
let (words1, words2) = (&words[0].0, &words[1].0);
let pairs = Self::words_pair_combinations(words1, words2);
use std::cmp::{min, max};
for proximity in 1..=8 {
let (words1, words2) = (&words[0].0, &words[1].0);
let pairs = words_pair_combinations(words1, words2);
let tail = &words[1..];
let nb_children = tail.len() as u32 - 1;
// The minimum amount of mana that you must consume is at least 1 and the
// amount of mana that your children can consume. Because the last child must
// consume the remaining mana, it is mandatory that there not too much at the end.
let min_proximity = max(1, mana.saturating_sub(nb_children * 8)) as u8;
// The maximum amount of mana that you can use is 8 or the remaining amount of
// mana minus your children, as you can't just consume all the mana,
// your children must have at least 1 mana.
let max_proximity = min(8, mana - nb_children) as u8;
for proximity in min_proximity..=max_proximity {
let mut docids = match union_cache.entry((words.len(), proximity)) {
Occupied(entry) => entry.get().clone(),
Vacant(entry) => {
@ -169,7 +193,7 @@ impl<'a> Search<'a> {
} else {
for (w1, w2) in pairs.iter().cloned() {
let key = (w1, w2, proximity);
if let Some(di) = self.index.word_pair_proximity_docids.get(self.rtxn, &key)? {
if let Some(di) = index.word_pair_proximity_docids.get(rtxn, &key)? {
docids.union_with(&di);
}
}
@ -181,10 +205,10 @@ impl<'a> Search<'a> {
docids.intersect_with(parent_docids);
if !docids.is_empty() {
let words = &words[1..];
// We are the last word.
if words.len() < 2 { return Ok(Some(docids)) }
if let Some(di) = self.depth_first_search(words, candidates, &docids, union_cache)? {
let mana = mana.checked_sub(proximity as u32).unwrap();
// We are the last pair, we return without recursing as we don't have any child.
if tail.len() < 2 { return Ok(Some(docids)) }
if let Some(di) = mdfs(index, rtxn, mana, tail, candidates, &docids, union_cache)? {
return Ok(Some(di))
}
}
@ -193,6 +217,26 @@ impl<'a> Search<'a> {
Ok(None)
}
// Compute the number of pairs (windows) we have for this list of words.
// If there only is one word therefore the only possible documents are the candidates.
let initial_mana = match words.len().checked_sub(1) {
Some(nb_windows) if nb_windows != 0 => nb_windows as u32,
_ => return Ok(Some(candidates.clone())),
};
// TODO We must keep track of where we are in terms of mana and that should either be
// handled by an Iterator or by the caller. Keeping track of the amount of mana
// is an optimization, it makes this mdfs to only be called with the next valid
// mana and not called with all of the previous mana values.
for mana in initial_mana..=initial_mana * 8 {
if let Some(answer) = mdfs(&self.index, &self.rtxn, mana, words, candidates, candidates, union_cache)? {
return Ok(Some(answer));
}
}
Ok(None)
}
pub fn execute(&self) -> anyhow::Result<SearchResult> {
let limit = self.limit;
@ -217,20 +261,13 @@ impl<'a> Search<'a> {
debug!("candidates: {:?}", candidates);
// If there is only one query word, no need to compute the best proximities.
if derived_words.len() == 1 || candidates.is_empty() {
let found_words = derived_words.into_iter().flat_map(|(w, _)| w).map(|(w, _)| w).collect();
let documents_ids = candidates.iter().take(limit).collect();
return Ok(SearchResult { found_words, documents_ids });
}
let mut documents = Vec::new();
let mut union_cache = HashMap::new();
// We execute the DFS until we find enough documents, we run it with the
// candidates list and remove the found documents from this list at each iteration.
while documents.iter().map(RoaringBitmap::len).sum::<u64>() < limit as u64 {
let answer = self.depth_first_search(&derived_words, &candidates, &candidates, &mut union_cache)?;
let answer = self.mana_depth_first_search(&derived_words, &candidates, &mut union_cache)?;
let answer = match answer {
Some(answer) if !answer.is_empty() => answer,