mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-18 08:48:32 +08:00
Merge #733
733: Avoid a prefix-related worst-case scenario in the proximity criterion r=loiclec a=loiclec # Pull Request ## Related issue Somewhat fixes (until merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3118 ## What does this PR do? When a query ends with a word and a prefix, such as: ``` word pr ``` Then we first determine whether `pre` *could possibly* be in the proximity prefix database before querying it. There are then three possibilities: 1. `pr` is not in any prefix cache because it is not the prefix of many words. We don't query the proximity prefix database. Instead, we list all the word derivations of `pre` through the FST and query the regular proximity databases. 2. `pr` is in the prefix cache but cannot be found in the proximity prefix databases. **In this case, we partially disable the proximity ranking rule for the pair `word pre`.** This is done as follows: 1. Only find the documents where `word` is in proximity to `pre` **exactly** (no derivations) 2. Otherwise, assume that their proximity in all the documents in which they coexist is >= 8 3. `pr` is in the prefix cache and can be found in the proximity prefix databases. In this case we simply query the proximity prefix databases. Note that if a prefix is longer than 2 bytes, then it cannot be in the proximity prefix databases. Also, proximities larger than 4 are not present in these databases either. Therefore, the impact on relevancy is: 1. For common prefixes of one or two letters: we no longer distinguish between proximities from 4 to 8 2. For common prefixes of more than two letters: we no longer distinguish between any proximities 3. For uncommon prefixes: nothing changes Regarding (1), it means that these two documents would be considered equally relevant according to the proximity rule for the query `heard pr` (IF `pr` is the prefix of more than 200 words in the dataset): ```json [ { "text": "I heard there is a faster proximity criterion" }, { "text": "I heard there is a faster but less relevant proximity criterion" } ] ``` Regarding (2), it means that two documents would be considered equally relevant according to the proximity rule for the query "faster pro": ```json [ { "text": "I heard there is a faster but less relevant proximity criterion" } { "text": "I heard there is a faster proximity criterion" }, ] ``` But the following document would be considered more relevant than the two documents above: ```json { "text": "I heard there is a faster swimmer who is competing in the pro section of the competition " } ``` Note, however, that this change of behaviour only occurs when using the set-based version of the proximity criterion. In cases where there are fewer than 1000 candidate documents when the proximity criterion is called, this PR does not change anything. --- ## Performance I couldn't use the existing search benchmarks to measure the impact of the PR, but I did some manual tests with the `songs` benchmark dataset. ``` 1. 10x 'a': - 640ms ⟹ 630ms = no significant difference 2. 10x 'b': - set-based: 4.47s ⟹ 7.42 = bad, ~2x regression - dynamic: 1s ⟹ 870 ms = no significant difference 3. 'Someone I l': - set-based: 250ms ⟹ 12 ms = very good, x20 speedup - dynamic: 21ms ⟹ 11 ms = good, x2 speedup 4. 'billie e': - set-based: 623ms ⟹ 2ms = very good, x300 speedup - dynamic: ~4ms ⟹ 4ms = no difference 5. 'billie ei': - set-based: 57ms ⟹ 20ms = good, ~2x speedup - dynamic: ~4ms ⟹ ~2ms. = no significant difference 6. 'i am getting o' - set-based: 300ms ⟹ 60ms = very good, 5x speedup - dynamic: 30ms ⟹ 6ms = very good, 5x speedup 7. 'prologue 1 a 1: - set-based: 3.36s ⟹ 120ms = very good, 30x speedup - dynamic: 200ms ⟹ 30ms = very good, 6x speedup 8. 'prologue 1 a 10': - set-based: 590ms ⟹ 18ms = very good, 30x speedup - dynamic: 82ms ⟹ 35ms = good, ~2x speedup ``` Performance is often significantly better, but there is also one regression in the set-based implementation with the query `b b b b b b b b b b`. Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
This commit is contained in:
commit
c3f4835e8e
@ -17,6 +17,7 @@ use super::query_tree::{Operation, PrimitiveQueryPart, Query, QueryKind};
|
||||
use super::CriterionImplementationStrategy;
|
||||
use crate::search::criteria::geo::Geo;
|
||||
use crate::search::{word_derivations, Distinct, WordDerivationsCache};
|
||||
use crate::update::{MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB, MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB};
|
||||
use crate::{AscDesc as AscDescName, DocumentId, FieldId, Index, Member, Result};
|
||||
|
||||
mod asc_desc;
|
||||
@ -653,14 +654,30 @@ fn query_pair_proximity_docids(
|
||||
match (&left.kind, &right.kind) {
|
||||
(QueryKind::Exact { word: left, .. }, QueryKind::Exact { word: right, .. }) => {
|
||||
if prefix {
|
||||
match word_prefix_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)? {
|
||||
Some(docids) => Ok(docids),
|
||||
None => {
|
||||
// There are three distinct cases which we need to distinguish regarding the prefix `right`:
|
||||
//
|
||||
// 1. `right` is not in any prefix cache because it is not the prefix of many words
|
||||
// (and thus, it doesn't have many word derivations)
|
||||
// 2. `right` is in the prefix cache but cannot be found in the "word prefix pair proximity" databases either
|
||||
// because it is too long or because the given proximity is too high.
|
||||
// 3. `right` is in the prefix cache and can be found in the "word prefix pair proximity" databases
|
||||
//
|
||||
// The three cases are handled as follows:
|
||||
// 1. We manually retrieve all the word derivations of `right` and check the `word_pair_proximity`
|
||||
// database for each of them.
|
||||
// 2. It would be too expensive to apply the same strategy as (1), therefore, we "disable" the
|
||||
// proximity ranking rule for the prefixes of the right word. This is done as follows:
|
||||
// 1. Only find the documents where left is in proximity to the exact (ie non-prefix) right word
|
||||
// 2. Otherwise, assume that their proximity in all the documents in which they coexist is >= 8
|
||||
//
|
||||
// 3. Query the prefix proximity databases.
|
||||
match (
|
||||
ctx.in_prefix_cache(right),
|
||||
right.len() <= MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB
|
||||
&& proximity <= MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB,
|
||||
) {
|
||||
// Case 1: not in prefix cache
|
||||
(false, _) => {
|
||||
let r_words = word_derivations(right, true, 0, ctx.words_fst(), wdcache)?;
|
||||
all_word_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
@ -669,40 +686,91 @@ fn query_pair_proximity_docids(
|
||||
proximity,
|
||||
)
|
||||
}
|
||||
// Case 2: in prefix cache but either the prefix length or the proximity makes it impossible to
|
||||
// query the prefix proximity databases.
|
||||
(true, false) => {
|
||||
// To "save" the relevancy a little bit, we still find the documents where the
|
||||
// exact (i.e. non-prefix) right word is in the given proximity to the left word.
|
||||
Ok(word_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)?
|
||||
.unwrap_or_default())
|
||||
}
|
||||
// Case 3: in prefix cache, short enough, and proximity is low enough
|
||||
(true, true) => Ok(word_prefix_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)?
|
||||
.unwrap_or_default()),
|
||||
}
|
||||
} else {
|
||||
Ok(ctx
|
||||
.word_pair_proximity_docids(left.as_str(), right.as_str(), proximity)?
|
||||
.unwrap_or_default())
|
||||
Ok(word_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)?
|
||||
.unwrap_or_default())
|
||||
}
|
||||
}
|
||||
(QueryKind::Tolerant { typo, word: left }, QueryKind::Exact { word: right, .. }) => {
|
||||
let l_words =
|
||||
word_derivations(left, false, *typo, ctx.words_fst(), wdcache)?.to_owned();
|
||||
if prefix {
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for (left, _) in l_words {
|
||||
let current_docids = match word_prefix_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)? {
|
||||
Some(docids) => Ok(docids),
|
||||
None => {
|
||||
let r_words =
|
||||
word_derivations(right, true, 0, ctx.words_fst(), wdcache)?;
|
||||
all_word_pair_overall_proximity_docids(
|
||||
// The logic here is almost identical to the one in the previous match branch.
|
||||
// The difference is that we fetch the docids for each derivation of the left word.
|
||||
match (
|
||||
ctx.in_prefix_cache(right),
|
||||
right.len() <= MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB
|
||||
&& proximity <= MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB,
|
||||
) {
|
||||
// Case 1: not in prefix cache
|
||||
(false, _) => {
|
||||
let mut docids = RoaringBitmap::new();
|
||||
let r_words = word_derivations(right, true, 0, ctx.words_fst(), wdcache)?;
|
||||
for (left, _) in l_words {
|
||||
docids |= all_word_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
&[(left, 0)],
|
||||
r_words,
|
||||
proximity,
|
||||
)
|
||||
)?;
|
||||
}
|
||||
}?;
|
||||
docids |= current_docids;
|
||||
Ok(docids)
|
||||
}
|
||||
// Case 2: in prefix cache but either the prefix length or the proximity makes it impossible to
|
||||
// query the prefix proximity databases.
|
||||
(true, false) => {
|
||||
// To "save" the relevancy a little bit, we still find the documents where the
|
||||
// exact (i.e. non-prefix) right word is in proximity to any derivation of the left word.
|
||||
let mut candidates = RoaringBitmap::new();
|
||||
for (left, _) in l_words {
|
||||
candidates |= ctx
|
||||
.word_pair_proximity_docids(&left, right, proximity)?
|
||||
.unwrap_or_default();
|
||||
}
|
||||
Ok(candidates)
|
||||
}
|
||||
// Case 3: in prefix cache, short enough, and proximity is low enough
|
||||
(true, true) => {
|
||||
let mut docids = RoaringBitmap::new();
|
||||
for (left, _) in l_words {
|
||||
docids |= word_prefix_pair_overall_proximity_docids(
|
||||
ctx,
|
||||
left.as_str(),
|
||||
right.as_str(),
|
||||
proximity,
|
||||
)?
|
||||
.unwrap_or_default();
|
||||
}
|
||||
Ok(docids)
|
||||
}
|
||||
}
|
||||
Ok(docids)
|
||||
} else {
|
||||
all_word_pair_overall_proximity_docids(ctx, &l_words, &[(right, 0)], proximity)
|
||||
}
|
||||
|
@ -590,3 +590,123 @@ fn resolve_plane_sweep_candidates(
|
||||
|
||||
Ok(candidates)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io::Cursor;
|
||||
|
||||
use big_s::S;
|
||||
|
||||
use crate::documents::{DocumentsBatchBuilder, DocumentsBatchReader};
|
||||
use crate::index::tests::TempIndex;
|
||||
use crate::{CriterionImplementationStrategy, SearchResult};
|
||||
|
||||
fn documents_with_enough_different_words_for_prefixes(prefixes: &[&str]) -> Vec<crate::Object> {
|
||||
let mut documents = Vec::new();
|
||||
for prefix in prefixes {
|
||||
for i in 0..500 {
|
||||
documents.push(
|
||||
serde_json::json!({
|
||||
"text": format!("{prefix}{i:x}"),
|
||||
})
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.clone(),
|
||||
)
|
||||
}
|
||||
}
|
||||
documents
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proximity_criterion_prefix_handling() {
|
||||
let mut index = TempIndex::new();
|
||||
index.index_documents_config.autogenerate_docids = true;
|
||||
|
||||
index
|
||||
.update_settings(|settings| {
|
||||
settings.set_primary_key(S("id"));
|
||||
settings.set_criteria(vec![
|
||||
"words".to_owned(),
|
||||
"typo".to_owned(),
|
||||
"proximity".to_owned(),
|
||||
]);
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
let mut documents = DocumentsBatchBuilder::new(Vec::new());
|
||||
|
||||
for doc in [
|
||||
// 0
|
||||
serde_json::json!({ "text": "zero is exactly the amount of configuration I want" }),
|
||||
// 1
|
||||
serde_json::json!({ "text": "zero bad configuration" }),
|
||||
// 2
|
||||
serde_json::json!({ "text": "zero configuration" }),
|
||||
// 3
|
||||
serde_json::json!({ "text": "zero config" }),
|
||||
// 4
|
||||
serde_json::json!({ "text": "zero conf" }),
|
||||
// 5
|
||||
serde_json::json!({ "text": "zero bad conf" }),
|
||||
] {
|
||||
documents.append_json_object(doc.as_object().unwrap()).unwrap();
|
||||
}
|
||||
for doc in documents_with_enough_different_words_for_prefixes(&["conf"]) {
|
||||
documents.append_json_object(&doc).unwrap();
|
||||
}
|
||||
let documents =
|
||||
DocumentsBatchReader::from_reader(Cursor::new(documents.into_inner().unwrap()))
|
||||
.unwrap();
|
||||
|
||||
index.add_documents(documents).unwrap();
|
||||
|
||||
let rtxn = index.read_txn().unwrap();
|
||||
|
||||
let SearchResult { matching_words: _, candidates: _, documents_ids } = index
|
||||
.search(&rtxn)
|
||||
.query("zero c")
|
||||
.criterion_implementation_strategy(CriterionImplementationStrategy::OnlySetBased)
|
||||
.execute()
|
||||
.unwrap();
|
||||
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 3, 4, 1, 5, 0]");
|
||||
|
||||
let SearchResult { matching_words: _, candidates: _, documents_ids } = index
|
||||
.search(&rtxn)
|
||||
.query("zero co")
|
||||
.criterion_implementation_strategy(CriterionImplementationStrategy::OnlySetBased)
|
||||
.execute()
|
||||
.unwrap();
|
||||
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 3, 4, 1, 5, 0]");
|
||||
|
||||
let SearchResult { matching_words: _, candidates: _, documents_ids } = index
|
||||
.search(&rtxn)
|
||||
.query("zero con")
|
||||
.criterion_implementation_strategy(CriterionImplementationStrategy::OnlySetBased)
|
||||
.execute()
|
||||
.unwrap();
|
||||
// Here searh results are degraded because `con` is in the prefix cache but it is too
|
||||
// long to be stored in the prefix proximity databases, and we don't want to iterate over
|
||||
// all of its word derivations
|
||||
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[0, 1, 2, 3, 4, 5]");
|
||||
|
||||
let SearchResult { matching_words: _, candidates: _, documents_ids } = index
|
||||
.search(&rtxn)
|
||||
.criterion_implementation_strategy(CriterionImplementationStrategy::OnlySetBased)
|
||||
.query("zero conf")
|
||||
.execute()
|
||||
.unwrap();
|
||||
// Here search results are degraded as well, but we can still rank correctly documents
|
||||
// that contain `conf` exactly, and not as a prefix.
|
||||
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[4, 5, 0, 1, 2, 3]");
|
||||
|
||||
let SearchResult { matching_words: _, candidates: _, documents_ids } = index
|
||||
.search(&rtxn)
|
||||
.criterion_implementation_strategy(CriterionImplementationStrategy::OnlySetBased)
|
||||
.query("zero config")
|
||||
.execute()
|
||||
.unwrap();
|
||||
// `config` is not a common prefix, so the normal methods are used
|
||||
insta::assert_snapshot!(format!("{documents_ids:?}"), @"[2, 3, 1, 0, 4, 5]");
|
||||
}
|
||||
}
|
||||
|
@ -7,7 +7,10 @@ pub use self::index_documents::{
|
||||
DocumentAdditionResult, DocumentId, IndexDocuments, IndexDocumentsConfig, IndexDocumentsMethod,
|
||||
};
|
||||
pub use self::indexer_config::IndexerConfig;
|
||||
pub use self::prefix_word_pairs::PrefixWordPairsProximityDocids;
|
||||
pub use self::prefix_word_pairs::{
|
||||
PrefixWordPairsProximityDocids, MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB,
|
||||
MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB,
|
||||
};
|
||||
pub use self::settings::{Setting, Settings};
|
||||
pub use self::update_step::UpdateIndexingStep;
|
||||
pub use self::word_prefix_docids::WordPrefixDocids;
|
||||
|
@ -14,6 +14,9 @@ mod word_prefix;
|
||||
pub use prefix_word::index_prefix_word_database;
|
||||
pub use word_prefix::index_word_prefix_database;
|
||||
|
||||
pub const MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB: u8 = 4;
|
||||
pub const MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB: usize = 2;
|
||||
|
||||
pub struct PrefixWordPairsProximityDocids<'t, 'u, 'i> {
|
||||
wtxn: &'t mut heed::RwTxn<'i, 'u>,
|
||||
index: &'i Index,
|
||||
@ -32,31 +35,12 @@ impl<'t, 'u, 'i> PrefixWordPairsProximityDocids<'t, 'u, 'i> {
|
||||
Self {
|
||||
wtxn,
|
||||
index,
|
||||
max_proximity: 4,
|
||||
max_prefix_length: 2,
|
||||
max_proximity: MAX_PROXIMITY_FOR_PREFIX_PROXIMITY_DB,
|
||||
max_prefix_length: MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB,
|
||||
chunk_compression_type,
|
||||
chunk_compression_level,
|
||||
}
|
||||
}
|
||||
/// Set the maximum proximity required to make a prefix be part of the words prefixes
|
||||
/// database. If two words are too far from the threshold the associated documents will
|
||||
/// not be part of the prefix database.
|
||||
///
|
||||
/// Default value is 4. This value must be lower or equal than 7 and will be clamped
|
||||
/// to this bound otherwise.
|
||||
pub fn max_proximity(&mut self, value: u8) -> &mut Self {
|
||||
self.max_proximity = value.max(7);
|
||||
self
|
||||
}
|
||||
/// Set the maximum length the prefix of a word pair is allowed to have to be part of the words
|
||||
/// prefixes database. If the prefix length is higher than the threshold, the associated documents
|
||||
/// will not be part of the prefix database.
|
||||
///
|
||||
/// Default value is 2.
|
||||
pub fn max_prefix_length(&mut self, value: usize) -> &mut Self {
|
||||
self.max_prefix_length = value;
|
||||
self
|
||||
}
|
||||
|
||||
#[logging_timer::time("WordPrefixPairProximityDocids::{}")]
|
||||
pub fn execute<'a>(
|
||||
|
Loading…
Reference in New Issue
Block a user