mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-18 08:48:32 +08:00
Change encoding of word_pair_proximity DB to (proximity, word1, word2)
Same for word_prefix_pair_proximity
This commit is contained in:
parent
19b2326f3d
commit
bdeb47305e
@ -7,12 +7,11 @@ impl<'a> heed::BytesDecode<'a> for StrStrU8Codec {
|
||||
type DItem = (&'a str, &'a str, u8);
|
||||
|
||||
fn bytes_decode(bytes: &'a [u8]) -> Option<Self::DItem> {
|
||||
let (n, bytes) = bytes.split_last()?;
|
||||
let (n, bytes) = bytes.split_first()?;
|
||||
let s1_end = bytes.iter().position(|b| *b == 0)?;
|
||||
let (s1_bytes, rest) = bytes.split_at(s1_end);
|
||||
let rest = &rest[1..];
|
||||
let s2_bytes = &rest[1..];
|
||||
let s1 = str::from_utf8(s1_bytes).ok()?;
|
||||
let (_, s2_bytes) = rest.split_last()?;
|
||||
let s2 = str::from_utf8(s2_bytes).ok()?;
|
||||
Some((s1, s2, *n))
|
||||
}
|
||||
@ -22,12 +21,11 @@ impl<'a> heed::BytesEncode<'a> for StrStrU8Codec {
|
||||
type EItem = (&'a str, &'a str, u8);
|
||||
|
||||
fn bytes_encode((s1, s2, n): &Self::EItem) -> Option<Cow<[u8]>> {
|
||||
let mut bytes = Vec::with_capacity(s1.len() + s2.len() + 1 + 1);
|
||||
let mut bytes = Vec::with_capacity(s1.len() + s2.len() + 1);
|
||||
bytes.push(*n);
|
||||
bytes.extend_from_slice(s1.as_bytes());
|
||||
bytes.push(0);
|
||||
bytes.extend_from_slice(s2.as_bytes());
|
||||
bytes.push(0);
|
||||
bytes.push(*n);
|
||||
Some(Cow::Owned(bytes))
|
||||
}
|
||||
}
|
||||
@ -37,11 +35,10 @@ impl<'a> heed::BytesDecode<'a> for UncheckedStrStrU8Codec {
|
||||
type DItem = (&'a [u8], &'a [u8], u8);
|
||||
|
||||
fn bytes_decode(bytes: &'a [u8]) -> Option<Self::DItem> {
|
||||
let (n, bytes) = bytes.split_last()?;
|
||||
let (n, bytes) = bytes.split_first()?;
|
||||
let s1_end = bytes.iter().position(|b| *b == 0)?;
|
||||
let (s1_bytes, rest) = bytes.split_at(s1_end);
|
||||
let rest = &rest[1..];
|
||||
let (_, s2_bytes) = rest.split_last()?;
|
||||
let s2_bytes = &rest[1..];
|
||||
Some((s1_bytes, s2_bytes, *n))
|
||||
}
|
||||
}
|
||||
@ -50,12 +47,11 @@ impl<'a> heed::BytesEncode<'a> for UncheckedStrStrU8Codec {
|
||||
type EItem = (&'a [u8], &'a [u8], u8);
|
||||
|
||||
fn bytes_encode((s1, s2, n): &Self::EItem) -> Option<Cow<[u8]>> {
|
||||
let mut bytes = Vec::with_capacity(s1.len() + s2.len() + 1 + 1);
|
||||
let mut bytes = Vec::with_capacity(s1.len() + s2.len() + 1);
|
||||
bytes.push(*n);
|
||||
bytes.extend_from_slice(s1);
|
||||
bytes.push(0);
|
||||
bytes.extend_from_slice(s2);
|
||||
bytes.push(0);
|
||||
bytes.push(*n);
|
||||
Some(Cow::Owned(bytes))
|
||||
}
|
||||
}
|
||||
|
@ -194,7 +194,7 @@ pub fn snap_word_prefix_pair_proximity_docids(index: &Index) -> String {
|
||||
(word1, prefix, proximity),
|
||||
b,
|
||||
)| {
|
||||
&format!("{word1:<16} {prefix:<4} {proximity:<2} {}", display_bitmap(&b))
|
||||
&format!("{proximity:<2} {word1:<16} {prefix:<4} {}", display_bitmap(&b))
|
||||
});
|
||||
snap
|
||||
}
|
||||
|
@ -151,11 +151,10 @@ fn document_word_positions_into_sorter<'b>(
|
||||
let mut key_buffer = Vec::new();
|
||||
for ((w1, w2), prox) in word_pair_proximity {
|
||||
key_buffer.clear();
|
||||
key_buffer.push(prox as u8);
|
||||
key_buffer.extend_from_slice(w1.as_bytes());
|
||||
key_buffer.push(0);
|
||||
key_buffer.extend_from_slice(w2.as_bytes());
|
||||
key_buffer.push(0);
|
||||
key_buffer.push(prox as u8);
|
||||
|
||||
word_pair_proximity_docids_sorter.insert(&key_buffer, &document_id.to_ne_bytes())?;
|
||||
}
|
||||
|
@ -1,46 +1,46 @@
|
||||
---
|
||||
source: milli/src/update/word_prefix_pair_proximity_docids.rs
|
||||
---
|
||||
5 a 1 [101, ]
|
||||
5 a 2 [101, ]
|
||||
5 b 4 [101, ]
|
||||
5 be 4 [101, ]
|
||||
am a 3 [101, ]
|
||||
amazing a 1 [100, ]
|
||||
amazing a 2 [100, ]
|
||||
amazing a 3 [100, ]
|
||||
amazing b 2 [100, ]
|
||||
amazing be 2 [100, ]
|
||||
an a 1 [100, ]
|
||||
an a 2 [100, ]
|
||||
an b 3 [100, ]
|
||||
an be 3 [100, ]
|
||||
and a 2 [100, ]
|
||||
and a 3 [100, ]
|
||||
and a 4 [100, ]
|
||||
and b 1 [100, ]
|
||||
and be 1 [100, ]
|
||||
at a 1 [100, ]
|
||||
at a 2 [100, 101, ]
|
||||
at a 3 [100, ]
|
||||
at b 3 [101, ]
|
||||
at b 4 [100, ]
|
||||
at be 3 [101, ]
|
||||
at be 4 [100, ]
|
||||
beautiful a 2 [100, ]
|
||||
beautiful a 3 [100, ]
|
||||
beautiful a 4 [100, ]
|
||||
bell a 2 [101, ]
|
||||
bell a 4 [101, ]
|
||||
house a 3 [100, ]
|
||||
house a 4 [100, ]
|
||||
house b 2 [100, ]
|
||||
house be 2 [100, ]
|
||||
rings a 1 [101, ]
|
||||
rings a 3 [101, ]
|
||||
rings b 2 [101, ]
|
||||
rings be 2 [101, ]
|
||||
the a 3 [101, ]
|
||||
the b 1 [101, ]
|
||||
the be 1 [101, ]
|
||||
1 5 a [101, ]
|
||||
1 amazing a [100, ]
|
||||
1 an a [100, ]
|
||||
1 and b [100, ]
|
||||
1 and be [100, ]
|
||||
1 at a [100, ]
|
||||
1 rings a [101, ]
|
||||
1 the b [101, ]
|
||||
1 the be [101, ]
|
||||
2 5 a [101, ]
|
||||
2 amazing a [100, ]
|
||||
2 amazing b [100, ]
|
||||
2 amazing be [100, ]
|
||||
2 an a [100, ]
|
||||
2 and a [100, ]
|
||||
2 at a [100, 101, ]
|
||||
2 beautiful a [100, ]
|
||||
2 bell a [101, ]
|
||||
2 house b [100, ]
|
||||
2 house be [100, ]
|
||||
2 rings b [101, ]
|
||||
2 rings be [101, ]
|
||||
3 am a [101, ]
|
||||
3 amazing a [100, ]
|
||||
3 an b [100, ]
|
||||
3 an be [100, ]
|
||||
3 and a [100, ]
|
||||
3 at a [100, ]
|
||||
3 at b [101, ]
|
||||
3 at be [101, ]
|
||||
3 beautiful a [100, ]
|
||||
3 house a [100, ]
|
||||
3 rings a [101, ]
|
||||
3 the a [101, ]
|
||||
4 5 b [101, ]
|
||||
4 5 be [101, ]
|
||||
4 and a [100, ]
|
||||
4 at b [100, ]
|
||||
4 at be [100, ]
|
||||
4 beautiful a [100, ]
|
||||
4 bell a [101, ]
|
||||
4 house a [100, ]
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
---
|
||||
source: milli/src/update/word_prefix_pair_proximity_docids.rs
|
||||
---
|
||||
5ed4bf83317b10962a55ade353427bdd
|
||||
fb88e49fd666886731b62baef8f44995
|
||||
|
@ -1,7 +1,7 @@
|
||||
/*!
|
||||
## What is WordPrefixPairProximityDocids?
|
||||
The word-prefix-pair-proximity-docids database is a database whose keys are of
|
||||
the form (`word`, `prefix`, `proximity`) and the values are roaring bitmaps of
|
||||
the form `(proximity, word, prefix)` and the values are roaring bitmaps of
|
||||
the documents which contain `word` followed by another word starting with
|
||||
`prefix` at a distance of `proximity`.
|
||||
|
||||
@ -23,127 +23,100 @@ dog
|
||||
Note that only prefixes which correspond to more than a certain number of
|
||||
different words from the database are included in this list.
|
||||
|
||||
* a sorted list of word pairs and the distance between them (i.e. proximity),
|
||||
* associated with a roaring bitmap, such as:
|
||||
* a sorted list of proximities and word pairs (the proximity is the distance between the two words),
|
||||
associated with a roaring bitmap, such as:
|
||||
```text
|
||||
good dog 3 -> docids1: [2, 5, 6]
|
||||
good doggo 1 -> docids2: [8]
|
||||
good dogma 1 -> docids3: [7, 19, 20]
|
||||
good ghost 2 -> docids4: [1]
|
||||
horror cathedral 4 -> docids5: [1, 2]
|
||||
1 good doggo -> docids1: [8]
|
||||
1 good door -> docids2: [7, 19, 20]
|
||||
1 good ghost -> docids3: [1]
|
||||
2 good dog -> docids4: [2, 5, 6]
|
||||
2 horror cathedral -> docids5: [1, 2]
|
||||
```
|
||||
|
||||
I illustrate a simplified version of the algorithm to create the word-prefix
|
||||
pair-proximity database below:
|
||||
|
||||
1. **Outer loop:** First, we iterate over each word pair and its proximity:
|
||||
1. **Outer loop:** First, we iterate over each proximity and word pair:
|
||||
```text
|
||||
proximity: 1
|
||||
word1 : good
|
||||
word2 : dog
|
||||
proximity: 3
|
||||
word2 : doggo
|
||||
```
|
||||
2. **Inner loop:** Then, we iterate over all the prefixes of `word2` that are
|
||||
in the list of sorted prefixes. And we insert the key (`prefix`, `proximity`)
|
||||
in the list of sorted prefixes. And we insert the key `prefix`
|
||||
and the value (`docids`) to a sorted map which we call the “batch”. For example,
|
||||
at the end of the first inner loop, we may have:
|
||||
```text
|
||||
Outer loop 1:
|
||||
------------------------------
|
||||
proximity: 1
|
||||
word1 : good
|
||||
word2 : dog
|
||||
proximity: 3
|
||||
word2 : doggo
|
||||
docids : docids1
|
||||
|
||||
prefixes: [d, do, dog]
|
||||
|
||||
batch: [
|
||||
(d, 3) -> [docids1]
|
||||
(do, 3) -> [docids1]
|
||||
(dog, 3) -> [docids1]
|
||||
d, -> [docids1]
|
||||
do -> [docids1]
|
||||
dog -> [docids1]
|
||||
]
|
||||
```
|
||||
3. For illustration purpose, let's run through a second iteration of the outer loop:
|
||||
```text
|
||||
Outer loop 2:
|
||||
------------------------------
|
||||
word1 : good
|
||||
word2 : doggo
|
||||
proximity: 1
|
||||
word1 : good
|
||||
word2 : door
|
||||
docids : docids2
|
||||
|
||||
prefixes: [d, do, dog]
|
||||
prefixes: [d, do, doo]
|
||||
|
||||
batch: [
|
||||
(d, 1) -> [docids2]
|
||||
(d, 3) -> [docids1]
|
||||
(do, 1) -> [docids2]
|
||||
(do, 3) -> [docids1]
|
||||
(dog, 1) -> [docids2]
|
||||
(dog, 3) -> [docids1]
|
||||
]
|
||||
```
|
||||
Notice that the batch had to re-order some (`prefix`, `proximity`) keys: some
|
||||
of the elements inserted in the second iteration of the outer loop appear
|
||||
*before* elements from the first iteration.
|
||||
|
||||
4. And a third:
|
||||
```text
|
||||
Outer loop 3:
|
||||
------------------------------
|
||||
word1 : good
|
||||
word2 : dogma
|
||||
proximity: 1
|
||||
docids : docids3
|
||||
|
||||
prefixes: [d, do, dog]
|
||||
|
||||
batch: [
|
||||
(d, 1) -> [docids2, docids3]
|
||||
(d, 3) -> [docids1]
|
||||
(do, 1) -> [docids2, docids3]
|
||||
(do, 3) -> [docids1]
|
||||
(dog, 1) -> [docids2, docids3]
|
||||
(dog, 3) -> [docids1]
|
||||
d -> [docids1, docids2]
|
||||
do -> [docids1, docids2]
|
||||
dog -> [docids1]
|
||||
doo -> [docids2]
|
||||
]
|
||||
```
|
||||
Notice that there were some conflicts which were resolved by merging the
|
||||
conflicting values together.
|
||||
conflicting values together. Also, an additional prefix was added at the
|
||||
end of the batch.
|
||||
|
||||
5. On the fourth iteration of the outer loop, we have:
|
||||
4. On the third iteration of the outer loop, we have:
|
||||
```text
|
||||
Outer loop 4:
|
||||
------------------------------
|
||||
proximity: 1
|
||||
word1 : good
|
||||
word2 : ghost
|
||||
proximity: 2
|
||||
```
|
||||
Because `word2` begins with a different letter than the previous `word2`,
|
||||
we know that:
|
||||
|
||||
1. All the prefixes of `word2` are greater than the prefixes of the previous word2
|
||||
2. And therefore, every instance of (`word2`, `prefix`) will be greater than
|
||||
any element in the batch.
|
||||
we know that all the prefixes of `word2` are greater than the prefixes of the previous word2
|
||||
|
||||
Therefore, we know that we can insert every element from the batch into the
|
||||
database before proceeding any further. This operation is called
|
||||
“flushing the batch”. Flushing the batch should also be done whenever `word1`
|
||||
is different than the previous `word1`.
|
||||
“flushing the batch”. Flushing the batch should also be done whenever:
|
||||
* `proximity` is different than the previous `proximity`.
|
||||
* `word1` is different than the previous `word1`.
|
||||
* `word2` starts with a different letter than the previous word2
|
||||
|
||||
6. **Flushing the batch:** to flush the batch, we look at the `word1` and
|
||||
iterate over the elements of the batch in sorted order:
|
||||
6. **Flushing the batch:** to flush the batch, we iterate over its elements:
|
||||
```text
|
||||
Flushing Batch loop 1:
|
||||
------------------------------
|
||||
word1 : good
|
||||
word2 : d
|
||||
proximity: 1
|
||||
proximity : 1
|
||||
word1 : good
|
||||
prefix : d
|
||||
|
||||
docids : [docids2, docids3]
|
||||
```
|
||||
We then merge the array of `docids` (of type `Vec<Vec<u8>>`) using
|
||||
`merge_cbo_roaring_bitmap` in order to get a single byte vector representing a
|
||||
roaring bitmap of all the document ids where `word1` is followed by `prefix`
|
||||
at a distance of `proximity`.
|
||||
Once we have done that, we insert (`word1`, `prefix`, `proximity`) -> `merged_docids`
|
||||
Once we have done that, we insert `(proximity, word1, prefix) -> merged_docids`
|
||||
into the database.
|
||||
|
||||
7. That's it! ... except...
|
||||
@ -184,8 +157,8 @@ Note, also, that since we read data from the database when iterating over
|
||||
`word_pairs_db`, we cannot insert the computed word-prefix-pair-proximity-
|
||||
docids from the batch directly into the database (we would have a concurrent
|
||||
reader and writer). Therefore, when calling the algorithm on
|
||||
(`new_prefixes`, `word_pairs_db`), we insert the computed
|
||||
((`word`, `prefix`, `proximity`), `docids`) elements in an intermediary grenad
|
||||
`(new_prefixes, word_pairs_db)`, we insert the computed
|
||||
`((proximity, word, prefix), docids)` elements in an intermediary grenad
|
||||
Writer instead of the DB. At the end of the outer loop, we finally read from
|
||||
the grenad and insert its elements in the database.
|
||||
|
||||
@ -406,7 +379,7 @@ fn execute_on_word_pairs_and_prefixes<I>(
|
||||
while let Some(((word1, word2, proximity), data)) = next_word_pair_proximity(iter)? {
|
||||
// skip this iteration if the proximity is over the threshold
|
||||
if proximity > max_proximity {
|
||||
continue;
|
||||
break;
|
||||
};
|
||||
let word2_start_different_than_prev = word2[0] != prev_word2_start;
|
||||
// if there were no potential prefixes for the previous word2 based on its first letter,
|
||||
@ -416,16 +389,21 @@ fn execute_on_word_pairs_and_prefixes<I>(
|
||||
continue;
|
||||
}
|
||||
|
||||
// if word1 is different than the previous word1 OR if the start of word2 is different
|
||||
// than the previous start of word2, then we'll need to flush the batch
|
||||
// if the proximity is different to the previous one, OR
|
||||
// if word1 is different than the previous word1, OR
|
||||
// if the start of word2 is different than the previous start of word2,
|
||||
// THEN we'll need to flush the batch
|
||||
let prox_different_than_prev = proximity != batch.proximity;
|
||||
let word1_different_than_prev = word1 != batch.word1;
|
||||
if word1_different_than_prev || word2_start_different_than_prev {
|
||||
if prox_different_than_prev || word1_different_than_prev || word2_start_different_than_prev
|
||||
{
|
||||
batch.flush(&mut merge_buffer, &mut insert)?;
|
||||
// don't forget to reset the value of batch.word1 and prev_word2_start
|
||||
if word1_different_than_prev {
|
||||
prefix_search_start.0 = 0;
|
||||
batch.word1.clear();
|
||||
batch.word1.extend_from_slice(word1);
|
||||
batch.proximity = proximity;
|
||||
}
|
||||
if word2_start_different_than_prev {
|
||||
// word2_start_different_than_prev == true
|
||||
@ -437,74 +415,70 @@ fn execute_on_word_pairs_and_prefixes<I>(
|
||||
|
||||
if !empty_prefixes {
|
||||
// All conditions are satisfied, we can now insert each new prefix of word2 into the batch
|
||||
prefix_buffer.clear();
|
||||
prefixes.for_each_prefix_of(
|
||||
word2,
|
||||
&mut prefix_buffer,
|
||||
&prefix_search_start,
|
||||
|prefix_buffer| {
|
||||
let prefix_len = prefix_buffer.len();
|
||||
prefix_buffer.push(0);
|
||||
prefix_buffer.push(proximity);
|
||||
batch.insert(&prefix_buffer, data.to_vec());
|
||||
prefix_buffer.truncate(prefix_len);
|
||||
},
|
||||
);
|
||||
prefix_buffer.clear();
|
||||
}
|
||||
}
|
||||
batch.flush(&mut merge_buffer, &mut insert)?;
|
||||
Ok(())
|
||||
}
|
||||
/**
|
||||
A map structure whose keys are (prefix, proximity) and whose values are vectors of bitstrings (serialized roaring bitmaps).
|
||||
A map structure whose keys are prefixes and whose values are vectors of bitstrings (serialized roaring bitmaps).
|
||||
The keys are sorted and conflicts are resolved by merging the vectors of bitstrings together.
|
||||
|
||||
It is used to ensure that all ((word1, prefix, proximity), docids) are inserted into the database in sorted order and efficiently.
|
||||
It is used to ensure that all ((proximity, word1, prefix), docids) are inserted into the database in sorted order and efficiently.
|
||||
|
||||
The batch is flushed as often as possible, when we are sure that every (word1, prefix, proximity) key derived from its content
|
||||
The batch is flushed as often as possible, when we are sure that every (proximity, word1, prefix) key derived from its content
|
||||
can be inserted into the database in sorted order. When it is flushed, it calls a user-provided closure with the following arguments:
|
||||
- key : (word1, prefix, proximity) as bytes
|
||||
- value : merged roaring bitmaps from all values associated with (prefix, proximity) in the batch, serialised to bytes
|
||||
- key : (proximity, word1, prefix) as bytes
|
||||
- value : merged roaring bitmaps from all values associated with prefix in the batch, serialised to bytes
|
||||
*/
|
||||
#[derive(Default)]
|
||||
struct PrefixAndProximityBatch {
|
||||
proximity: u8,
|
||||
word1: Vec<u8>,
|
||||
batch: Vec<(Vec<u8>, Vec<Cow<'static, [u8]>>)>,
|
||||
}
|
||||
|
||||
impl PrefixAndProximityBatch {
|
||||
/// Insert the new key and value into the batch
|
||||
///
|
||||
/// The key must either exist in the batch or be greater than all existing keys
|
||||
fn insert(&mut self, new_key: &[u8], new_value: Vec<u8>) {
|
||||
match self.batch.binary_search_by_key(&new_key, |(k, _)| k.as_slice()) {
|
||||
Ok(position) => {
|
||||
self.batch[position].1.push(Cow::Owned(new_value));
|
||||
}
|
||||
Err(position) => {
|
||||
self.batch.insert(position, (new_key.to_vec(), vec![Cow::Owned(new_value)]));
|
||||
}
|
||||
match self.batch.iter_mut().find(|el| el.0 == new_key) {
|
||||
Some((_prefix, docids)) => docids.push(Cow::Owned(new_value)),
|
||||
None => self.batch.push((new_key.to_vec(), vec![Cow::Owned(new_value)])),
|
||||
}
|
||||
}
|
||||
|
||||
/// Empties the batch, calling `insert` on each element.
|
||||
///
|
||||
/// The key given to `insert` is `(word1, prefix, proximity)` and the value is the associated merged roaring bitmap.
|
||||
/// The key given to `insert` is `(proximity, word1, prefix)` and the value is the associated merged roaring bitmap.
|
||||
fn flush(
|
||||
&mut self,
|
||||
merge_buffer: &mut Vec<u8>,
|
||||
insert: &mut impl for<'buffer> FnMut(&'buffer [u8], &'buffer [u8]) -> Result<()>,
|
||||
) -> Result<()> {
|
||||
let PrefixAndProximityBatch { word1, batch } = self;
|
||||
let PrefixAndProximityBatch { proximity, word1, batch } = self;
|
||||
if batch.is_empty() {
|
||||
return Ok(());
|
||||
}
|
||||
merge_buffer.clear();
|
||||
|
||||
let mut buffer = Vec::with_capacity(word1.len() + 1 + 6 + 1);
|
||||
let mut buffer = Vec::with_capacity(word1.len() + 1 + 6);
|
||||
buffer.push(*proximity);
|
||||
buffer.extend_from_slice(word1);
|
||||
buffer.push(0);
|
||||
|
||||
for (key, mergeable_data) in batch.drain(..) {
|
||||
buffer.truncate(word1.len() + 1);
|
||||
buffer.truncate(1 + word1.len() + 1);
|
||||
buffer.extend_from_slice(key.as_slice());
|
||||
|
||||
let data = if mergeable_data.len() > 1 {
|
||||
@ -884,51 +858,33 @@ mod tests {
|
||||
CboRoaringBitmapCodec::serialize_into(&bitmap_ranges, &mut serialised_bitmap_ranges);
|
||||
|
||||
let word_pairs = [
|
||||
// 1, 3: (healthy arb 2) and (healthy arbre 2) with (bitmap123 | bitmap456)
|
||||
(("healthy", "arbre", 2), &serialised_bitmap123),
|
||||
// not inserted because 3 > max_proximity
|
||||
(("healthy", "arbre", 3), &serialised_bitmap456),
|
||||
// 0, 2: (healthy arb 1) and (healthy arbre 1) with (bitmap123)
|
||||
(("healthy", "arbres", 1), &serialised_bitmap123),
|
||||
// 1, 3:
|
||||
(("healthy", "arbres", 2), &serialised_bitmap456),
|
||||
// not be inserted because 3 > max_proximity
|
||||
(("healthy", "arbres", 3), &serialised_bitmap789),
|
||||
// not inserted because no prefixes for boat
|
||||
(("healthy", "boat", 1), &serialised_bitmap123),
|
||||
// not inserted because no prefixes for ca
|
||||
(("healthy", "ca", 1), &serialised_bitmap123),
|
||||
// 4: (healthy cat 1) with (bitmap456 + bitmap123)
|
||||
(("healthy", "cats", 1), &serialised_bitmap456),
|
||||
// 5: (healthy cat 2) with (bitmap789 + bitmap_ranges)
|
||||
(("healthy", "cats", 2), &serialised_bitmap789),
|
||||
// 4 + 6: (healthy catto 1) with (bitmap123)
|
||||
(("healthy", "cattos", 1), &serialised_bitmap123),
|
||||
// 5 + 7: (healthy catto 2) with (bitmap_ranges)
|
||||
(("healthy", "cattos", 2), &serialised_bitmap_ranges),
|
||||
// 8: (jittery cat 1) with (bitmap123 | bitmap456 | bitmap789 | bitmap_ranges)
|
||||
(("jittery", "cat", 1), &serialised_bitmap123),
|
||||
// 8:
|
||||
(("jittery", "cata", 1), &serialised_bitmap456),
|
||||
// 8:
|
||||
(("jittery", "catb", 1), &serialised_bitmap789),
|
||||
// 8:
|
||||
(("jittery", "catc", 1), &serialised_bitmap_ranges),
|
||||
(("healthy", "arbre", 2), &serialised_bitmap123),
|
||||
(("healthy", "arbres", 2), &serialised_bitmap456),
|
||||
(("healthy", "cats", 2), &serialised_bitmap789),
|
||||
(("healthy", "cattos", 2), &serialised_bitmap_ranges),
|
||||
(("healthy", "arbre", 3), &serialised_bitmap456),
|
||||
(("healthy", "arbres", 3), &serialised_bitmap789),
|
||||
];
|
||||
|
||||
let expected_result = [
|
||||
// first batch:
|
||||
(("healthy", "arb", 1), bitmap123.clone()),
|
||||
(("healthy", "arb", 2), &bitmap123 | &bitmap456),
|
||||
(("healthy", "arbre", 1), bitmap123.clone()),
|
||||
(("healthy", "arbre", 2), &bitmap123 | &bitmap456),
|
||||
// second batch:
|
||||
(("healthy", "cat", 1), &bitmap456 | &bitmap123),
|
||||
(("healthy", "cat", 2), &bitmap789 | &bitmap_ranges),
|
||||
(("healthy", "catto", 1), bitmap123.clone()),
|
||||
(("healthy", "catto", 2), bitmap_ranges.clone()),
|
||||
// third batch
|
||||
(("jittery", "cat", 1), (&bitmap123 | &bitmap456 | &bitmap789 | &bitmap_ranges)),
|
||||
(("healthy", "arb", 2), &bitmap123 | &bitmap456),
|
||||
(("healthy", "arbre", 2), &bitmap123 | &bitmap456),
|
||||
(("healthy", "cat", 2), &bitmap789 | &bitmap_ranges),
|
||||
(("healthy", "catto", 2), bitmap_ranges.clone()),
|
||||
];
|
||||
|
||||
let mut result = vec![];
|
||||
|
Loading…
Reference in New Issue
Block a user