4548: v1.8 hybrid search changes r=dureuill a=dureuill

Implements the search changes from the [usage page](https://meilisearch.notion.site/v1-8-AI-search-API-usage-135552d6e85a4a52bc7109be82aeca42#40f24df3da694428a39cc8043c9cfc64)

### ⚠️ Breaking changes in an experimental feature:

- Removed the `_semanticScore`. Use the `_rankingScore` instead.
- Removed `vector` in the response of the search (output was too big).
- Removed all the vectors from the `vectorSort` ranking score details
  - target vector appearing in the name of the rule
  - matched vector appearing in the details of the rule

### Other user-facing changes

- Added `semanticHitCount`, indicating how many hits were returned from the semantic search. This is especially useful in the hybrid search.
- Embed lazily: Meilisearch no longer generates an embedding when the keyword results are "good enough".
- Graceful embedding failure in hybrid search: when doing hybrid search (`semanticRatio in ]0.0, 1.0[`), an embedding failure no longer causes the search request to fail. Instead, only the keyword search is performed. When doing a full vector search (`semanticRatio==1.0`), a failure to embed will still result in failing that search.

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2024-04-04 16:00:20 +00:00 committed by GitHub
commit b1844b0c27
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 508 additions and 322 deletions

View File

@ -758,9 +758,9 @@ impl SearchAggregator {
let SearchResult { let SearchResult {
hits: _, hits: _,
query: _, query: _,
vector: _,
processing_time_ms, processing_time_ms,
hits_info: _, hits_info: _,
semantic_hit_count: _,
facet_distribution: _, facet_distribution: _,
facet_stats: _, facet_stats: _,
degraded, degraded,

View File

@ -12,6 +12,7 @@ use tracing::debug;
use crate::analytics::{Analytics, FacetSearchAggregator}; use crate::analytics::{Analytics, FacetSearchAggregator};
use crate::extractors::authentication::policies::*; use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData; use crate::extractors::authentication::GuardedData;
use crate::routes::indexes::search::search_kind;
use crate::search::{ use crate::search::{
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery, add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
@ -73,9 +74,10 @@ pub async fn search(
let index = index_scheduler.index(&index_uid)?; let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features(); let features = index_scheduler.features();
let search_kind = search_kind(&search_query, &index_scheduler, &index, features)?;
let _permit = search_queue.try_get_search_permit().await?; let _permit = search_queue.try_get_search_permit().await?;
let search_result = tokio::task::spawn_blocking(move || { let search_result = tokio::task::spawn_blocking(move || {
perform_facet_search(&index, search_query, facet_query, facet_name, features) perform_facet_search(&index, search_query, facet_query, facet_name, search_kind)
}) })
.await?; .await?;

View File

@ -1,26 +1,26 @@
use actix_web::web::Data; use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse}; use actix_web::{web, HttpRequest, HttpResponse};
use deserr::actix_web::{AwebJson, AwebQueryParameter}; use deserr::actix_web::{AwebJson, AwebQueryParameter};
use index_scheduler::IndexScheduler; use index_scheduler::{IndexScheduler, RoFeatures};
use meilisearch_types::deserr::query_params::Param; use meilisearch_types::deserr::query_params::Param;
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError}; use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::*; use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError; use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid; use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli; use meilisearch_types::milli;
use meilisearch_types::milli::vector::DistributionShift;
use meilisearch_types::serde_cs::vec::CS; use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value; use serde_json::Value;
use tracing::{debug, warn}; use tracing::debug;
use crate::analytics::{Analytics, SearchAggregator}; use crate::analytics::{Analytics, SearchAggregator};
use crate::error::MeilisearchHttpError;
use crate::extractors::authentication::policies::*; use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData; use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler; use crate::extractors::sequential_extractor::SeqHandler;
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS; use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
use crate::search::{ use crate::search::{
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery, SemanticRatio, add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchKind, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
}; };
use crate::search_queue::SearchQueue; use crate::search_queue::SearchQueue;
@ -204,12 +204,11 @@ pub async fn search_with_url_query(
let index = index_scheduler.index(&index_uid)?; let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features(); let features = index_scheduler.features();
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?; let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
let _permit = search_queue.try_get_search_permit().await?; let _permit = search_queue.try_get_search_permit().await?;
let search_result = let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution)) tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
.await?;
if let Ok(ref search_result) = search_result { if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result); aggregate.succeed(search_result);
} }
@ -245,12 +244,11 @@ pub async fn search_with_post(
let features = index_scheduler.features(); let features = index_scheduler.features();
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?; let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
let _permit = search_queue.try_get_search_permit().await?; let _permit = search_queue.try_get_search_permit().await?;
let search_result = let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution)) tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
.await?;
if let Ok(ref search_result) = search_result { if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result); aggregate.succeed(search_result);
if search_result.degraded { if search_result.degraded {
@ -265,76 +263,58 @@ pub async fn search_with_post(
Ok(HttpResponse::Ok().json(search_result)) Ok(HttpResponse::Ok().json(search_result))
} }
pub fn embed( pub fn search_kind(
query: &mut SearchQuery, query: &SearchQuery,
index_scheduler: &IndexScheduler, index_scheduler: &IndexScheduler,
index: &milli::Index, index: &milli::Index,
) -> Result<Option<DistributionShift>, ResponseError> { features: RoFeatures,
match (&query.hybrid, &query.vector, &query.q) { ) -> Result<SearchKind, ResponseError> {
(Some(HybridQuery { semantic_ratio: _, embedder }), None, Some(q)) if query.vector.is_some() {
if !q.trim().is_empty() => features.check_vector("Passing `vector` as a query parameter")?;
{ }
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder = if let Some(embedder_name) = embedder { if query.hybrid.is_some() {
embedders.get(embedder_name) features.check_vector("Passing `hybrid` as a query parameter")?;
} else { }
embedders.get_default()
};
let embedder = embedder // regardless of anything, always do a keyword search when we don't have a vector and the query is whitespace or missing
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned())) if query.vector.is_none() {
.map_err(milli::Error::from)? match &query.q {
.0; Some(q) if q.trim().is_empty() => return Ok(SearchKind::KeywordOnly),
None => return Ok(SearchKind::KeywordOnly),
let distribution = embedder.distribution(); _ => {}
let embeddings = embedder
.embed(vec![q.to_owned()])
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?
.pop()
.expect("No vector returned from embedding");
if embeddings.iter().nth(1).is_some() {
warn!("Ignoring embeddings past the first one in long search query");
query.vector = Some(embeddings.iter().next().unwrap().to_vec());
} else {
query.vector = Some(embeddings.into_inner());
}
Ok(distribution)
} }
(Some(hybrid), vector, _) => { }
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder = if let Some(embedder_name) = &hybrid.embedder { match &query.hybrid {
embedders.get(embedder_name) Some(HybridQuery { semantic_ratio, embedder }) if **semantic_ratio == 1.0 => {
} else { Ok(SearchKind::semantic(
embedders.get_default() index_scheduler,
}; index,
embedder.as_deref(),
let embedder = embedder query.vector.as_ref().map(Vec::len),
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned())) )?)
.map_err(milli::Error::from)?
.0;
if let Some(vector) = vector {
if vector.len() != embedder.dimensions() {
return Err(meilisearch_types::milli::Error::UserError(
meilisearch_types::milli::UserError::InvalidVectorDimensions {
expected: embedder.dimensions(),
found: vector.len(),
},
)
.into());
}
}
Ok(embedder.distribution())
} }
_ => Ok(None), Some(HybridQuery { semantic_ratio, embedder: _ }) if **semantic_ratio == 0.0 => {
Ok(SearchKind::KeywordOnly)
}
Some(HybridQuery { semantic_ratio, embedder }) => Ok(SearchKind::hybrid(
index_scheduler,
index,
embedder.as_deref(),
**semantic_ratio,
query.vector.as_ref().map(Vec::len),
)?),
None => match (query.q.as_deref(), query.vector.as_deref()) {
(_query, None) => Ok(SearchKind::KeywordOnly),
(None, Some(_vector)) => Ok(SearchKind::semantic(
index_scheduler,
index,
None,
query.vector.as_ref().map(Vec::len),
)?),
(Some(_), Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
},
} }
} }

View File

@ -13,7 +13,7 @@ use crate::analytics::{Analytics, MultiSearchAggregator};
use crate::extractors::authentication::policies::ActionPolicy; use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::{AuthenticationError, GuardedData}; use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler; use crate::extractors::sequential_extractor::SeqHandler;
use crate::routes::indexes::search::embed; use crate::routes::indexes::search::search_kind;
use crate::search::{ use crate::search::{
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex, add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
}; };
@ -81,14 +81,13 @@ pub async fn multi_search_with_post(
}) })
.with_index(query_index)?; .with_index(query_index)?;
let distribution = let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)
embed(&mut query, index_scheduler.get_ref(), &index).with_index(query_index)?; .with_index(query_index)?;
let search_result = tokio::task::spawn_blocking(move || { let search_result =
perform_search(&index, query, features, distribution) tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind))
}) .await
.await .with_index(query_index)?;
.with_index(query_index)?;
search_results.push(SearchResultWithIndex { search_results.push(SearchResultWithIndex {
index_uid: index_uid.into_inner(), index_uid: index_uid.into_inner(),

View File

@ -1,19 +1,20 @@
use std::cmp::min; use std::cmp::min;
use std::collections::{BTreeMap, BTreeSet, HashSet}; use std::collections::{BTreeMap, BTreeSet, HashSet};
use std::str::FromStr; use std::str::FromStr;
use std::sync::Arc;
use std::time::{Duration, Instant}; use std::time::{Duration, Instant};
use deserr::Deserr; use deserr::Deserr;
use either::Either; use either::Either;
use index_scheduler::RoFeatures;
use indexmap::IndexMap; use indexmap::IndexMap;
use meilisearch_auth::IndexSearchRules; use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError; use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*; use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::heed::RoTxn; use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid; use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{self, ScoreDetails, ScoringStrategy}; use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::vector::DistributionShift; use meilisearch_types::milli::vector::Embedder;
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget}; use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget};
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS; use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document}; use meilisearch_types::{milli, Document};
@ -90,13 +91,75 @@ pub struct SearchQuery {
#[derive(Debug, Clone, Default, PartialEq, Deserr)] #[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)] #[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
pub struct HybridQuery { pub struct HybridQuery {
/// TODO validate that sementic ratio is between 0.0 and 1,0
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)] #[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
pub semantic_ratio: SemanticRatio, pub semantic_ratio: SemanticRatio,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)] #[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>, pub embedder: Option<String>,
} }
pub enum SearchKind {
KeywordOnly,
SemanticOnly { embedder_name: String, embedder: Arc<Embedder> },
Hybrid { embedder_name: String, embedder: Arc<Embedder>, semantic_ratio: f32 },
}
impl SearchKind {
pub(crate) fn semantic(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::SemanticOnly { embedder_name, embedder })
}
pub(crate) fn hybrid(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
semantic_ratio: f32,
vector_len: Option<usize>,
) -> Result<Self, ResponseError> {
let (embedder_name, embedder) =
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
}
fn embedder(
index_scheduler: &index_scheduler::IndexScheduler,
index: &Index,
embedder_name: Option<&str>,
vector_len: Option<usize>,
) -> Result<(String, Arc<Embedder>), ResponseError> {
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name());
let embedder = embedders.get(embedder_name);
let embedder = embedder
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
.map_err(milli::Error::from)?
.0;
if let Some(vector_len) = vector_len {
if vector_len != embedder.dimensions() {
return Err(meilisearch_types::milli::Error::UserError(
meilisearch_types::milli::UserError::InvalidVectorDimensions {
expected: embedder.dimensions(),
found: vector_len,
},
)
.into());
}
}
Ok((embedder_name.to_owned(), embedder))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Deserr)] #[derive(Debug, Clone, Copy, PartialEq, Deserr)]
#[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)] #[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
pub struct SemanticRatio(f32); pub struct SemanticRatio(f32);
@ -305,8 +368,6 @@ pub struct SearchHit {
pub ranking_score: Option<f64>, pub ranking_score: Option<f64>,
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")] #[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>, pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
#[serde(rename = "_semanticScore", skip_serializing_if = "Option::is_none")]
pub semantic_score: Option<f32>,
} }
#[derive(Serialize, Debug, Clone, PartialEq)] #[derive(Serialize, Debug, Clone, PartialEq)]
@ -314,8 +375,6 @@ pub struct SearchHit {
pub struct SearchResult { pub struct SearchResult {
pub hits: Vec<SearchHit>, pub hits: Vec<SearchHit>,
pub query: String, pub query: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub vector: Option<Vec<f32>>,
pub processing_time_ms: u128, pub processing_time_ms: u128,
#[serde(flatten)] #[serde(flatten)]
pub hits_info: HitsInfo, pub hits_info: HitsInfo,
@ -324,6 +383,9 @@ pub struct SearchResult {
#[serde(skip_serializing_if = "Option::is_none")] #[serde(skip_serializing_if = "Option::is_none")]
pub facet_stats: Option<BTreeMap<String, FacetStats>>, pub facet_stats: Option<BTreeMap<String, FacetStats>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub semantic_hit_count: Option<u32>,
// These fields are only used for analytics purposes // These fields are only used for analytics purposes
#[serde(skip)] #[serde(skip)]
pub degraded: bool, pub degraded: bool,
@ -386,47 +448,36 @@ fn prepare_search<'t>(
index: &'t Index, index: &'t Index,
rtxn: &'t RoTxn, rtxn: &'t RoTxn,
query: &'t SearchQuery, query: &'t SearchQuery,
features: RoFeatures, search_kind: &SearchKind,
distribution: Option<DistributionShift>,
time_budget: TimeBudget, time_budget: TimeBudget,
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> { ) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
let mut search = index.search(rtxn); let mut search = index.search(rtxn);
search.time_budget(time_budget); search.time_budget(time_budget);
if query.vector.is_some() { match search_kind {
features.check_vector("Passing `vector` as a query parameter")?; SearchKind::KeywordOnly => {
} if let Some(q) = &query.q {
if query.hybrid.is_some() {
features.check_vector("Passing `hybrid` as a query parameter")?;
}
if query.hybrid.is_none() && query.q.is_some() && query.vector.is_some() {
return Err(MeilisearchHttpError::MissingSearchHybrid);
}
search.distribution_shift(distribution);
if let Some(ref vector) = query.vector {
match &query.hybrid {
// If semantic ratio is 0.0, only the query search will impact the search results,
// skip the vector
Some(hybrid) if *hybrid.semantic_ratio == 0.0 => (),
_otherwise => {
search.vector(vector.clone());
}
}
}
if let Some(ref q) = query.q {
match &query.hybrid {
// If semantic ratio is 1.0, only the vector search will impact the search results,
// skip the query
Some(hybrid) if *hybrid.semantic_ratio == 1.0 => (),
_otherwise => {
search.query(q); search.query(q);
} }
} }
SearchKind::SemanticOnly { embedder_name, embedder } => {
let vector = match query.vector.clone() {
Some(vector) => vector,
None => embedder
.embed_one(query.q.clone().unwrap())
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?,
};
search.semantic(embedder_name.clone(), embedder.clone(), Some(vector));
}
SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => {
if let Some(q) = &query.q {
search.query(q);
}
// will be embedded in hybrid search if necessary
search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone());
}
} }
if let Some(ref searchable) = query.attributes_to_search_on { if let Some(ref searchable) = query.attributes_to_search_on {
@ -449,10 +500,6 @@ fn prepare_search<'t>(
ScoringStrategy::Skip ScoringStrategy::Skip
}); });
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
search.embedder_name(embedder);
}
// compute the offset on the limit depending on the pagination mode. // compute the offset on the limit depending on the pagination mode.
let (offset, limit) = if is_finite_pagination { let (offset, limit) = if is_finite_pagination {
let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT); let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
@ -495,8 +542,7 @@ fn prepare_search<'t>(
pub fn perform_search( pub fn perform_search(
index: &Index, index: &Index,
query: SearchQuery, query: SearchQuery,
features: RoFeatures, search_kind: SearchKind,
distribution: Option<DistributionShift>,
) -> Result<SearchResult, MeilisearchHttpError> { ) -> Result<SearchResult, MeilisearchHttpError> {
let before_search = Instant::now(); let before_search = Instant::now();
let rtxn = index.read_txn()?; let rtxn = index.read_txn()?;
@ -506,22 +552,26 @@ pub fn perform_search(
}; };
let (search, is_finite_pagination, max_total_hits, offset) = let (search, is_finite_pagination, max_total_hits, offset) =
prepare_search(index, &rtxn, &query, features, distribution, time_budget)?; prepare_search(index, &rtxn, &query, &search_kind, time_budget)?;
let milli::SearchResult { let (
documents_ids, milli::SearchResult {
matching_words, documents_ids,
candidates, matching_words,
document_scores, candidates,
degraded, document_scores,
used_negative_operator, degraded,
.. used_negative_operator,
} = match &query.hybrid {
Some(hybrid) => match *hybrid.semantic_ratio {
ratio if ratio == 0.0 || ratio == 1.0 => search.execute()?,
ratio => search.execute_hybrid(ratio)?,
}, },
None => search.execute()?, semantic_hit_count,
) = match &search_kind {
SearchKind::KeywordOnly => (search.execute()?, None),
SearchKind::SemanticOnly { .. } => {
let results = search.execute()?;
let semantic_hit_count = results.document_scores.len() as u32;
(results, Some(semantic_hit_count))
}
SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?,
}; };
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap(); let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@ -631,18 +681,6 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document); insert_geo_distance(sort, &mut document);
} }
let mut semantic_score = None;
for details in &score {
if let ScoreDetails::Vector(score_details::Vector {
target_vector: _,
value_similarity: Some((_matching_vector, similarity)),
}) = details
{
semantic_score = Some(*similarity);
break;
}
}
let ranking_score = let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter())); query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details = let ranking_score_details =
@ -654,7 +692,6 @@ pub fn perform_search(
matches_position, matches_position,
ranking_score_details, ranking_score_details,
ranking_score, ranking_score,
semantic_score,
}; };
documents.push(hit); documents.push(hit);
} }
@ -715,12 +752,12 @@ pub fn perform_search(
hits: documents, hits: documents,
hits_info, hits_info,
query: query.q.unwrap_or_default(), query: query.q.unwrap_or_default(),
vector: query.vector,
processing_time_ms: before_search.elapsed().as_millis(), processing_time_ms: before_search.elapsed().as_millis(),
facet_distribution, facet_distribution,
facet_stats, facet_stats,
degraded, degraded,
used_negative_operator, used_negative_operator,
semantic_hit_count,
}; };
Ok(result) Ok(result)
} }
@ -730,7 +767,7 @@ pub fn perform_facet_search(
search_query: SearchQuery, search_query: SearchQuery,
facet_query: Option<String>, facet_query: Option<String>,
facet_name: String, facet_name: String,
features: RoFeatures, search_kind: SearchKind,
) -> Result<FacetSearchResult, MeilisearchHttpError> { ) -> Result<FacetSearchResult, MeilisearchHttpError> {
let before_search = Instant::now(); let before_search = Instant::now();
let rtxn = index.read_txn()?; let rtxn = index.read_txn()?;
@ -739,10 +776,12 @@ pub fn perform_facet_search(
None => TimeBudget::default(), None => TimeBudget::default(),
}; };
let (search, _, _, _) = let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, &search_kind, time_budget)?;
prepare_search(index, &rtxn, &search_query, features, None, time_budget)?; let mut facet_search = SearchForFacetValues::new(
let mut facet_search = facet_name,
SearchForFacetValues::new(facet_name, search, search_query.hybrid.is_some()); search,
matches!(search_kind, SearchKind::Hybrid { .. }),
);
if let Some(facet_query) = &facet_query { if let Some(facet_query) = &facet_query {
facet_search.query(facet_query); facet_search.query(facet_query);
} }

View File

@ -77,14 +77,25 @@ async fn simple_search() {
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index let (response, code) = index
.search_post( .search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}}), json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true}),
) )
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_semanticScore":0.9472136}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"1");
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
} }
#[actix_rt::test] #[actix_rt::test]
@ -95,7 +106,7 @@ async fn distribution_shift() {
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}}); let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}});
let (response, code) = index.search_post(search.clone()).await; let (response, code) = index.search_post(search.clone()).await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444,"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669,"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112,"_semanticScore":0.9472136}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
let (response, code) = index let (response, code) = index
.update_settings(json!({ .update_settings(json!({
@ -116,7 +127,7 @@ async fn distribution_shift() {
let (response, code) = index.search_post(search).await; let (response, code) = index.search_post(search).await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.19161224365234375,"_semanticScore":0.19161224},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.1920928955078125e-7,"_semanticScore":1.1920929e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.1920928955078125e-7,"_semanticScore":1.1920929e-7}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.19161224365234375},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.1920928955078125e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.1920928955078125e-7}]"###);
} }
#[actix_rt::test] #[actix_rt::test]
@ -136,10 +147,12 @@ async fn highlighter() {
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}}}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}}}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0], .search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.8}, "hybrid": {"semanticRatio": 0.8},
"showRankingScore": true,
"attributesToHighlight": [ "attributesToHighlight": [
"desc" "desc"
], ],
@ -148,12 +161,14 @@ async fn highlighter() {
})) }))
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_semanticScore":0.9472136}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
// no highlighting on full semantic // no highlighting on full semantic
let (response, code) = index let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0], .search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 1.0}, "hybrid": {"semanticRatio": 1.0},
"showRankingScore": true,
"attributesToHighlight": [ "attributesToHighlight": [
"desc" "desc"
], ],
@ -162,7 +177,8 @@ async fn highlighter() {
})) }))
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}}]"###); snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
} }
#[actix_rt::test] #[actix_rt::test]
@ -249,5 +265,115 @@ async fn single_document() {
.await; .await;
snapshot!(code, @"200 OK"); snapshot!(code, @"200 OK");
snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0,"_semanticScore":1.0}"###); snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0}"###);
snapshot!(response["semanticHitCount"], @"1");
}
#[actix_rt::test]
async fn query_combination() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// same with a different semantic ratio
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// wrong vector dimensions
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid vector dimensions: expected: `2`, found: `3`.",
"code": "invalid_vector_dimensions",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_vector_dimensions"
}
"###);
// full vector
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.7773500680923462},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.7236068248748779},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.6581138968467712}]"###);
snapshot!(response["semanticHitCount"], @"3");
// full keyword, without a query
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// query + vector, full keyword => keyword
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.8848484848484849}]"###);
snapshot!(response["semanticHitCount"], @"null");
// query + vector, no hybrid keyword =>
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "showRankingScore": true}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.",
"code": "missing_search_hybrid",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#missing_search_hybrid"
}
"###);
// full vector, without a vector => error
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}),
)
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Error while generating embeddings: user error: attempt to embed the following text in a configuration where embeddings must be user provided: \"Captain\"",
"code": "vector_embedding_error",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
}
"###);
// hybrid without a vector => full keyword
let (response, code) = index
.search_post(
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848}]"###);
snapshot!(response["semanticHitCount"], @"0");
} }

View File

@ -1040,6 +1040,7 @@ async fn experimental_feature_vector_store() {
let (response, code) = index let (response, code) = index
.search_post(json!({ .search_post(json!({
"vector": [1.0, 2.0, 3.0], "vector": [1.0, 2.0, 3.0],
"showRankingScore": true
})) }))
.await; .await;
meili_snap::snapshot!(code, @"400 Bad Request"); meili_snap::snapshot!(code, @"400 Bad Request");
@ -1082,6 +1083,7 @@ async fn experimental_feature_vector_store() {
let (response, code) = index let (response, code) = index
.search_post(json!({ .search_post(json!({
"vector": [1.0, 2.0, 3.0], "vector": [1.0, 2.0, 3.0],
"showRankingScore": true,
})) }))
.await; .await;
@ -1099,7 +1101,7 @@ async fn experimental_feature_vector_store() {
3 3
] ]
}, },
"_semanticScore": 1.0 "_rankingScore": 1.0
}, },
{ {
"title": "Captain Marvel", "title": "Captain Marvel",
@ -1111,7 +1113,7 @@ async fn experimental_feature_vector_store() {
54 54
] ]
}, },
"_semanticScore": 0.9129112 "_rankingScore": 0.9129111766815186
}, },
{ {
"title": "Gläss", "title": "Gläss",
@ -1123,7 +1125,7 @@ async fn experimental_feature_vector_store() {
90 90
] ]
}, },
"_semanticScore": 0.8106413 "_rankingScore": 0.8106412887573242
}, },
{ {
"title": "How to Train Your Dragon: The Hidden World", "title": "How to Train Your Dragon: The Hidden World",
@ -1135,7 +1137,7 @@ async fn experimental_feature_vector_store() {
32 32
] ]
}, },
"_semanticScore": 0.74120104 "_rankingScore": 0.7412010431289673
}, },
{ {
"title": "Escape Room", "title": "Escape Room",
@ -1146,7 +1148,8 @@ async fn experimental_feature_vector_store() {
-23, -23,
32 32
] ]
} },
"_rankingScore": 0.6972063183784485
} }
] ]
"###); "###);

View File

@ -196,7 +196,7 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError), InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError),
#[error("Too many embedders in the configuration. Found {0}, but limited to 256.")] #[error("Too many embedders in the configuration. Found {0}, but limited to 256.")]
TooManyEmbedders(usize), TooManyEmbedders(usize),
#[error("Cannot find embedder with name {0}.")] #[error("Cannot find embedder with name `{0}`.")]
InvalidEmbedder(String), InvalidEmbedder(String),
#[error("Too many vectors for document with id {0}: found {1}, but limited to 256.")] #[error("Too many vectors for document with id {0}: found {1}, but limited to 256.")]
TooManyVectors(String, usize), TooManyVectors(String, usize),

View File

@ -1499,14 +1499,6 @@ impl Index {
.unwrap_or_default()) .unwrap_or_default())
} }
pub fn default_embedding_name(&self, rtxn: &RoTxn<'_>) -> Result<String> {
let configs = self.embedding_configs(rtxn)?;
Ok(match configs.as_slice() {
[(ref first_name, _)] => first_name.clone(),
_ => "default".to_owned(),
})
}
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> { pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff) self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
} }

View File

@ -61,7 +61,7 @@ pub use self::index::Index;
pub use self::search::facet::{FacetValueHit, SearchForFacetValues}; pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
pub use self::search::{ pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy, FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
Search, SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET, Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
}; };
pub type Result<T> = std::result::Result<T, error::Error>; pub type Result<T> = std::result::Result<T, error::Error>;

View File

@ -98,9 +98,9 @@ impl ScoreDetails {
ScoreDetails::ExactWords(e) => RankOrValue::Rank(e.rank()), ScoreDetails::ExactWords(e) => RankOrValue::Rank(e.rank()),
ScoreDetails::Sort(sort) => RankOrValue::Sort(sort), ScoreDetails::Sort(sort) => RankOrValue::Sort(sort),
ScoreDetails::GeoSort(geosort) => RankOrValue::GeoSort(geosort), ScoreDetails::GeoSort(geosort) => RankOrValue::GeoSort(geosort),
ScoreDetails::Vector(vector) => RankOrValue::Score( ScoreDetails::Vector(vector) => {
vector.value_similarity.as_ref().map(|(_, s)| *s as f64).unwrap_or(0.0f64), RankOrValue::Score(vector.similarity.as_ref().map(|s| *s as f64).unwrap_or(0.0f64))
), }
ScoreDetails::Skipped => RankOrValue::Rank(Rank { rank: 0, max_rank: 1 }), ScoreDetails::Skipped => RankOrValue::Rank(Rank { rank: 0, max_rank: 1 }),
} }
} }
@ -249,16 +249,13 @@ impl ScoreDetails {
order += 1; order += 1;
} }
ScoreDetails::Vector(s) => { ScoreDetails::Vector(s) => {
let vector = format!("vectorSort({:?})", s.target_vector); let similarity = s.similarity.as_ref();
let value = s.value_similarity.as_ref().map(|(v, _)| v);
let similarity = s.value_similarity.as_ref().map(|(_, s)| s);
let details = serde_json::json!({ let details = serde_json::json!({
"order": order, "order": order,
"value": value,
"similarity": similarity, "similarity": similarity,
}); });
details_map.insert(vector, details); details_map.insert("vectorSort".into(), details);
order += 1; order += 1;
} }
ScoreDetails::Skipped => { ScoreDetails::Skipped => {
@ -494,8 +491,7 @@ impl PartialOrd for GeoSort {
#[derive(Debug, Clone, PartialEq, PartialOrd)] #[derive(Debug, Clone, PartialEq, PartialOrd)]
pub struct Vector { pub struct Vector {
pub target_vector: Vec<f32>, pub similarity: Option<f32>,
pub value_similarity: Option<(Vec<f32>, f32)>,
} }
impl GeoSort { impl GeoSort {

View File

@ -92,9 +92,15 @@ impl<'a> SearchForFacetValues<'a> {
None => return Ok(Vec::new()), None => return Ok(Vec::new()),
}; };
let search_candidates = self let search_candidates = self.search_query.execute_for_candidates(
.search_query self.is_hybrid
.execute_for_candidates(self.is_hybrid || self.search_query.vector.is_some())?; || self
.search_query
.semantic
.as_ref()
.and_then(|semantic| semantic.vector.as_ref())
.is_some(),
)?;
let mut results = match index.sort_facet_values_by(rtxn)?.get(&self.facet) { let mut results = match index.sort_facet_values_by(rtxn)?.get(&self.facet) {
OrderBy::Lexicographic => ValuesCollection::by_lexicographic(self.max_values), OrderBy::Lexicographic => ValuesCollection::by_lexicographic(self.max_values),

View File

@ -4,6 +4,7 @@ use itertools::Itertools;
use roaring::RoaringBitmap; use roaring::RoaringBitmap;
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy}; use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
use crate::search::SemanticSearch;
use crate::{MatchingWords, Result, Search, SearchResult}; use crate::{MatchingWords, Result, Search, SearchResult};
struct ScoreWithRatioResult { struct ScoreWithRatioResult {
@ -83,50 +84,77 @@ impl ScoreWithRatioResult {
} }
} }
fn merge(left: Self, right: Self, from: usize, length: usize) -> SearchResult { fn merge(
let mut documents_ids = vector_results: Self,
Vec::with_capacity(left.document_scores.len() + right.document_scores.len()); keyword_results: Self,
let mut document_scores = from: usize,
Vec::with_capacity(left.document_scores.len() + right.document_scores.len()); length: usize,
) -> (SearchResult, u32) {
#[derive(Clone, Copy)]
enum ResultSource {
Semantic,
Keyword,
}
let mut semantic_hit_count = 0;
let mut documents_ids = Vec::with_capacity(
vector_results.document_scores.len() + keyword_results.document_scores.len(),
);
let mut document_scores = Vec::with_capacity(
vector_results.document_scores.len() + keyword_results.document_scores.len(),
);
let mut documents_seen = RoaringBitmap::new(); let mut documents_seen = RoaringBitmap::new();
for (docid, (main_score, _sub_score)) in left for ((docid, (main_score, _sub_score)), source) in vector_results
.document_scores .document_scores
.into_iter() .into_iter()
.merge_by(right.document_scores.into_iter(), |(_, left), (_, right)| { .zip(std::iter::repeat(ResultSource::Semantic))
// the first value is the one with the greatest score .merge_by(
compare_scores(left, right).is_ge() keyword_results
}) .document_scores
.into_iter()
.zip(std::iter::repeat(ResultSource::Keyword)),
|((_, left), _), ((_, right), _)| {
// the first value is the one with the greatest score
compare_scores(left, right).is_ge()
},
)
// remove documents we already saw // remove documents we already saw
.filter(|(docid, _)| documents_seen.insert(*docid)) .filter(|((docid, _), _)| documents_seen.insert(*docid))
// start skipping **after** the filter // start skipping **after** the filter
.skip(from) .skip(from)
// take **after** skipping // take **after** skipping
.take(length) .take(length)
{ {
if let ResultSource::Semantic = source {
semantic_hit_count += 1;
}
documents_ids.push(docid); documents_ids.push(docid);
// TODO: pass both scores to documents_score in some way? // TODO: pass both scores to documents_score in some way?
document_scores.push(main_score); document_scores.push(main_score);
} }
SearchResult { (
matching_words: right.matching_words, SearchResult {
candidates: left.candidates | right.candidates, matching_words: keyword_results.matching_words,
documents_ids, candidates: vector_results.candidates | keyword_results.candidates,
document_scores, documents_ids,
degraded: left.degraded | right.degraded, document_scores,
used_negative_operator: left.used_negative_operator | right.used_negative_operator, degraded: vector_results.degraded | keyword_results.degraded,
} used_negative_operator: vector_results.used_negative_operator
| keyword_results.used_negative_operator,
},
semantic_hit_count,
)
} }
} }
impl<'a> Search<'a> { impl<'a> Search<'a> {
pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<SearchResult> { pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<(SearchResult, Option<u32>)> {
// TODO: find classier way to achieve that than to reset vector and query params // TODO: find classier way to achieve that than to reset vector and query params
// create separate keyword and semantic searches // create separate keyword and semantic searches
let mut search = Search { let mut search = Search {
query: self.query.clone(), query: self.query.clone(),
vector: self.vector.clone(),
filter: self.filter.clone(), filter: self.filter.clone(),
offset: 0, offset: 0,
limit: self.limit + self.offset, limit: self.limit + self.offset,
@ -139,26 +167,43 @@ impl<'a> Search<'a> {
exhaustive_number_hits: self.exhaustive_number_hits, exhaustive_number_hits: self.exhaustive_number_hits,
rtxn: self.rtxn, rtxn: self.rtxn,
index: self.index, index: self.index,
distribution_shift: self.distribution_shift, semantic: self.semantic.clone(),
embedder_name: self.embedder_name.clone(),
time_budget: self.time_budget.clone(), time_budget: self.time_budget.clone(),
}; };
let vector_query = search.vector.take(); let semantic = search.semantic.take();
let keyword_results = search.execute()?; let keyword_results = search.execute()?;
// skip semantic search if we don't have a vector query (placeholder search)
let Some(vector_query) = vector_query else {
return Ok(keyword_results);
};
// completely skip semantic search if the results of the keyword search are good enough // completely skip semantic search if the results of the keyword search are good enough
if self.results_good_enough(&keyword_results, semantic_ratio) { if self.results_good_enough(&keyword_results, semantic_ratio) {
return Ok(keyword_results); return Ok((keyword_results, Some(0)));
} }
search.vector = Some(vector_query); // no vector search against placeholder search
search.query = None; let Some(query) = search.query.take() else {
return Ok((keyword_results, Some(0)));
};
// no embedder, no semantic search
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
return Ok((keyword_results, Some(0)));
};
let vector_query = match vector {
Some(vector_query) => vector_query,
None => {
// attempt to embed the vector
match embedder.embed_one(query) {
Ok(embedding) => embedding,
Err(error) => {
tracing::error!(error=%error, "Embedding failed");
return Ok((keyword_results, Some(0)));
}
}
}
};
search.semantic =
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
// TODO: would be better to have two distinct functions at this point // TODO: would be better to have two distinct functions at this point
let vector_results = search.execute()?; let vector_results = search.execute()?;
@ -166,10 +211,10 @@ impl<'a> Search<'a> {
let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio); let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio);
let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio); let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio);
let merge_results = let (merge_results, semantic_hit_count) =
ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit); ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit);
assert!(merge_results.documents_ids.len() <= self.limit); assert!(merge_results.documents_ids.len() <= self.limit);
Ok(merge_results) Ok((merge_results, Some(semantic_hit_count)))
} }
fn results_good_enough(&self, keyword_results: &SearchResult, semantic_ratio: f32) -> bool { fn results_good_enough(&self, keyword_results: &SearchResult, semantic_ratio: f32) -> bool {

View File

@ -1,4 +1,5 @@
use std::fmt; use std::fmt;
use std::sync::Arc;
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA}; use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
use once_cell::sync::Lazy; use once_cell::sync::Lazy;
@ -8,7 +9,7 @@ pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FAC
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords}; pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
use self::new::{execute_vector_search, PartialSearchResult}; use self::new::{execute_vector_search, PartialSearchResult};
use crate::score_details::{ScoreDetails, ScoringStrategy}; use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::vector::DistributionShift; use crate::vector::Embedder;
use crate::{ use crate::{
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Index, Result, execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Index, Result,
SearchContext, TimeBudget, SearchContext, TimeBudget,
@ -24,9 +25,15 @@ mod fst_utils;
pub mod hybrid; pub mod hybrid;
pub mod new; pub mod new;
#[derive(Debug, Clone)]
pub struct SemanticSearch {
vector: Option<Vec<f32>>,
embedder_name: String,
embedder: Arc<Embedder>,
}
pub struct Search<'a> { pub struct Search<'a> {
query: Option<String>, query: Option<String>,
vector: Option<Vec<f32>>,
// this should be linked to the String in the query // this should be linked to the String in the query
filter: Option<Filter<'a>>, filter: Option<Filter<'a>>,
offset: usize, offset: usize,
@ -38,12 +45,9 @@ pub struct Search<'a> {
scoring_strategy: ScoringStrategy, scoring_strategy: ScoringStrategy,
words_limit: usize, words_limit: usize,
exhaustive_number_hits: bool, exhaustive_number_hits: bool,
/// TODO: Add semantic ratio or pass it directly to execute_hybrid()
rtxn: &'a heed::RoTxn<'a>, rtxn: &'a heed::RoTxn<'a>,
index: &'a Index, index: &'a Index,
distribution_shift: Option<DistributionShift>, semantic: Option<SemanticSearch>,
embedder_name: Option<String>,
time_budget: TimeBudget, time_budget: TimeBudget,
} }
@ -51,7 +55,6 @@ impl<'a> Search<'a> {
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> { pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
Search { Search {
query: None, query: None,
vector: None,
filter: None, filter: None,
offset: 0, offset: 0,
limit: 20, limit: 20,
@ -64,8 +67,7 @@ impl<'a> Search<'a> {
words_limit: 10, words_limit: 10,
rtxn, rtxn,
index, index,
distribution_shift: None, semantic: None,
embedder_name: None,
time_budget: TimeBudget::max(), time_budget: TimeBudget::max(),
} }
} }
@ -75,8 +77,13 @@ impl<'a> Search<'a> {
self self
} }
pub fn vector(&mut self, vector: Vec<f32>) -> &mut Search<'a> { pub fn semantic(
self.vector = Some(vector); &mut self,
embedder_name: String,
embedder: Arc<Embedder>,
vector: Option<Vec<f32>>,
) -> &mut Search<'a> {
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
self self
} }
@ -133,19 +140,6 @@ impl<'a> Search<'a> {
self self
} }
pub fn distribution_shift(
&mut self,
distribution_shift: Option<DistributionShift>,
) -> &mut Search<'a> {
self.distribution_shift = distribution_shift;
self
}
pub fn embedder_name(&mut self, embedder_name: impl Into<String>) -> &mut Search<'a> {
self.embedder_name = Some(embedder_name.into());
self
}
pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> { pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> {
self.time_budget = time_budget; self.time_budget = time_budget;
self self
@ -161,15 +155,6 @@ impl<'a> Search<'a> {
} }
pub fn execute(&self) -> Result<SearchResult> { pub fn execute(&self) -> Result<SearchResult> {
let embedder_name;
let embedder_name = match &self.embedder_name {
Some(embedder_name) => embedder_name,
None => {
embedder_name = self.index.default_embedding_name(self.rtxn)?;
&embedder_name
}
};
let mut ctx = SearchContext::new(self.index, self.rtxn); let mut ctx = SearchContext::new(self.index, self.rtxn);
if let Some(searchable_attributes) = self.searchable_attributes { if let Some(searchable_attributes) = self.searchable_attributes {
@ -184,21 +169,23 @@ impl<'a> Search<'a> {
document_scores, document_scores,
degraded, degraded,
used_negative_operator, used_negative_operator,
} = match self.vector.as_ref() { } = match self.semantic.as_ref() {
Some(vector) => execute_vector_search( Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
&mut ctx, execute_vector_search(
vector, &mut ctx,
self.scoring_strategy, vector,
universe, self.scoring_strategy,
&self.sort_criteria, universe,
self.geo_strategy, &self.sort_criteria,
self.offset, self.geo_strategy,
self.limit, self.offset,
self.distribution_shift, self.limit,
embedder_name, embedder_name,
self.time_budget.clone(), embedder,
)?, self.time_budget.clone(),
None => execute_search( )?
}
_ => execute_search(
&mut ctx, &mut ctx,
self.query.as_deref(), self.query.as_deref(),
self.terms_matching_strategy, self.terms_matching_strategy,
@ -237,7 +224,6 @@ impl fmt::Debug for Search<'_> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Search { let Search {
query, query,
vector: _,
filter, filter,
offset, offset,
limit, limit,
@ -250,8 +236,7 @@ impl fmt::Debug for Search<'_> {
exhaustive_number_hits, exhaustive_number_hits,
rtxn: _, rtxn: _,
index: _, index: _,
distribution_shift, semantic,
embedder_name,
time_budget, time_budget,
} = self; } = self;
f.debug_struct("Search") f.debug_struct("Search")
@ -266,8 +251,10 @@ impl fmt::Debug for Search<'_> {
.field("scoring_strategy", scoring_strategy) .field("scoring_strategy", scoring_strategy)
.field("exhaustive_number_hits", exhaustive_number_hits) .field("exhaustive_number_hits", exhaustive_number_hits)
.field("words_limit", words_limit) .field("words_limit", words_limit)
.field("distribution_shift", distribution_shift) .field(
.field("embedder_name", embedder_name) "semantic.embedder_name",
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
)
.field("time_budget", time_budget) .field("time_budget", time_budget)
.finish() .finish()
} }

View File

@ -52,7 +52,7 @@ use self::vector_sort::VectorSort;
use crate::error::FieldIdMapMissingEntry; use crate::error::FieldIdMapMissingEntry;
use crate::score_details::{ScoreDetails, ScoringStrategy}; use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::search::new::distinct::apply_distinct_rule; use crate::search::new::distinct::apply_distinct_rule;
use crate::vector::DistributionShift; use crate::vector::Embedder;
use crate::{ use crate::{
AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, TimeBudget, AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, TimeBudget,
UserError, UserError,
@ -298,8 +298,8 @@ fn get_ranking_rules_for_vector<'ctx>(
geo_strategy: geo_sort::Strategy, geo_strategy: geo_sort::Strategy,
limit_plus_offset: usize, limit_plus_offset: usize,
target: &[f32], target: &[f32],
distribution_shift: Option<DistributionShift>,
embedder_name: &str, embedder_name: &str,
embedder: &Embedder,
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> { ) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
// query graph search // query graph search
@ -325,8 +325,8 @@ fn get_ranking_rules_for_vector<'ctx>(
target.to_vec(), target.to_vec(),
vector_candidates, vector_candidates,
limit_plus_offset, limit_plus_offset,
distribution_shift,
embedder_name, embedder_name,
embedder,
)?; )?;
ranking_rules.push(Box::new(vector_sort)); ranking_rules.push(Box::new(vector_sort));
vector = true; vector = true;
@ -548,8 +548,8 @@ pub fn execute_vector_search(
geo_strategy: geo_sort::Strategy, geo_strategy: geo_sort::Strategy,
from: usize, from: usize,
length: usize, length: usize,
distribution_shift: Option<DistributionShift>,
embedder_name: &str, embedder_name: &str,
embedder: &Embedder,
time_budget: TimeBudget, time_budget: TimeBudget,
) -> Result<PartialSearchResult> { ) -> Result<PartialSearchResult> {
check_sort_criteria(ctx, sort_criteria.as_ref())?; check_sort_criteria(ctx, sort_criteria.as_ref())?;
@ -562,8 +562,8 @@ pub fn execute_vector_search(
geo_strategy, geo_strategy,
from + length, from + length,
vector, vector,
distribution_shift,
embedder_name, embedder_name,
embedder,
)?; )?;
let mut placeholder_search_logger = logger::DefaultSearchLogger; let mut placeholder_search_logger = logger::DefaultSearchLogger;

View File

@ -5,14 +5,14 @@ use roaring::RoaringBitmap;
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait}; use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
use crate::score_details::{self, ScoreDetails}; use crate::score_details::{self, ScoreDetails};
use crate::vector::DistributionShift; use crate::vector::{DistributionShift, Embedder};
use crate::{DocumentId, Result, SearchContext, SearchLogger}; use crate::{DocumentId, Result, SearchContext, SearchLogger};
pub struct VectorSort<Q: RankingRuleQueryTrait> { pub struct VectorSort<Q: RankingRuleQueryTrait> {
query: Option<Q>, query: Option<Q>,
target: Vec<f32>, target: Vec<f32>,
vector_candidates: RoaringBitmap, vector_candidates: RoaringBitmap,
cached_sorted_docids: std::vec::IntoIter<(DocumentId, f32, Vec<f32>)>, cached_sorted_docids: std::vec::IntoIter<(DocumentId, f32)>,
limit: usize, limit: usize,
distribution_shift: Option<DistributionShift>, distribution_shift: Option<DistributionShift>,
embedder_index: u8, embedder_index: u8,
@ -24,8 +24,8 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
target: Vec<f32>, target: Vec<f32>,
vector_candidates: RoaringBitmap, vector_candidates: RoaringBitmap,
limit: usize, limit: usize,
distribution_shift: Option<DistributionShift>,
embedder_name: &str, embedder_name: &str,
embedder: &Embedder,
) -> Result<Self> { ) -> Result<Self> {
let embedder_index = ctx let embedder_index = ctx
.index .index
@ -39,7 +39,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
vector_candidates, vector_candidates,
cached_sorted_docids: Default::default(), cached_sorted_docids: Default::default(),
limit, limit,
distribution_shift, distribution_shift: embedder.distribution(),
embedder_index, embedder_index,
}) })
} }
@ -70,14 +70,9 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
for reader in readers.iter() { for reader in readers.iter() {
let nns_by_vector = let nns_by_vector =
reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?; reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?;
let vectors: std::result::Result<Vec<_>, _> = nns_by_vector results.extend(nns_by_vector.into_iter());
.iter()
.map(|(docid, _)| reader.item_vector(ctx.txn, *docid).transpose().unwrap())
.collect();
let vectors = vectors?;
results.extend(nns_by_vector.into_iter().zip(vectors).map(|((x, y), z)| (x, y, z)));
} }
results.sort_unstable_by_key(|(_, distance, _)| OrderedFloat(*distance)); results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
self.cached_sorted_docids = results.into_iter(); self.cached_sorted_docids = results.into_iter();
Ok(()) Ok(())
@ -118,14 +113,11 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
return Ok(Some(RankingRuleOutput { return Ok(Some(RankingRuleOutput {
query, query,
candidates: universe.clone(), candidates: universe.clone(),
score: ScoreDetails::Vector(score_details::Vector { score: ScoreDetails::Vector(score_details::Vector { similarity: None }),
target_vector: self.target.clone(),
value_similarity: None,
}),
})); }));
} }
for (docid, distance, vector) in self.cached_sorted_docids.by_ref() { for (docid, distance) in self.cached_sorted_docids.by_ref() {
if vector_candidates.contains(docid) { if vector_candidates.contains(docid) {
let score = 1.0 - distance; let score = 1.0 - distance;
let score = self let score = self
@ -135,10 +127,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
return Ok(Some(RankingRuleOutput { return Ok(Some(RankingRuleOutput {
query, query,
candidates: RoaringBitmap::from_iter([docid]), candidates: RoaringBitmap::from_iter([docid]),
score: ScoreDetails::Vector(score_details::Vector { score: ScoreDetails::Vector(score_details::Vector { similarity: Some(score) }),
target_vector: self.target.clone(),
value_similarity: Some((vector, score)),
}),
})); }));
} }
} }
@ -154,10 +143,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
return Ok(Some(RankingRuleOutput { return Ok(Some(RankingRuleOutput {
query, query,
candidates: universe.clone(), candidates: universe.clone(),
score: ScoreDetails::Vector(score_details::Vector { score: ScoreDetails::Vector(score_details::Vector { similarity: None }),
target_vector: self.target.clone(),
value_similarity: None,
}),
})); }));
} }

View File

@ -2672,7 +2672,16 @@ mod tests {
.unwrap(); .unwrap();
let rtxn = index.read_txn().unwrap(); let rtxn = index.read_txn().unwrap();
let res = index.search(&rtxn).vector([0.0, 1.0, 2.0].to_vec()).execute().unwrap(); let mut embedding_configs = index.embedding_configs(&rtxn).unwrap();
let (embedder_name, embedder) = embedding_configs.pop().unwrap();
let embedder =
std::sync::Arc::new(crate::vector::Embedder::new(embedder.embedder_options).unwrap());
assert_eq!("manual", embedder_name);
let res = index
.search(&rtxn)
.semantic(embedder_name, embedder, Some([0.0, 1.0, 2.0].to_vec()))
.execute()
.unwrap();
assert_eq!(res.documents_ids.len(), 3); assert_eq!(res.documents_ids.len(), 3);
} }

View File

@ -58,7 +58,7 @@ pub enum EmbedErrorKind {
RestResponseDeserialization(std::io::Error), RestResponseDeserialization(std::io::Error),
#[error("component `{0}` not found in path `{1}` in response: `{2}`")] #[error("component `{0}` not found in path `{1}` in response: `{2}`")]
RestResponseMissingEmbeddings(String, String, String), RestResponseMissingEmbeddings(String, String, String),
#[error("expected a response parseable as a vector or an array of vectors: {0}")] #[error("unexpected format of the embedding response: {0}")]
RestResponseFormat(serde_json::Error), RestResponseFormat(serde_json::Error),
#[error("expected a response containing {0} embeddings, got only {1}")] #[error("expected a response containing {0} embeddings, got only {1}")]
RestResponseEmbeddingCount(usize, usize), RestResponseEmbeddingCount(usize, usize),
@ -78,6 +78,8 @@ pub enum EmbedErrorKind {
RestNotAnObject(serde_json::Value, Vec<String>), RestNotAnObject(serde_json::Value, Vec<String>),
#[error("while embedding tokenized, was expecting embeddings of dimension `{0}`, got embeddings of dimensions `{1}`")] #[error("while embedding tokenized, was expecting embeddings of dimension `{0}`, got embeddings of dimensions `{1}`")]
OpenAiUnexpectedDimension(usize, usize), OpenAiUnexpectedDimension(usize, usize),
#[error("no embedding was produced")]
MissingEmbedding,
} }
impl EmbedError { impl EmbedError {
@ -190,6 +192,9 @@ impl EmbedError {
fault: FaultSource::Runtime, fault: FaultSource::Runtime,
} }
} }
pub(crate) fn missing_embedding() -> EmbedError {
Self { kind: EmbedErrorKind::MissingEmbedding, fault: FaultSource::Undecided }
}
} }
#[derive(Debug, thiserror::Error)] #[derive(Debug, thiserror::Error)]

View File

@ -143,7 +143,7 @@ impl EmbeddingConfigs {
/// Get the default embedder configuration, if any. /// Get the default embedder configuration, if any.
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> { pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
self.get_default_embedder_name().and_then(|default| self.get(&default)) self.get(self.get_default_embedder_name())
} }
/// Get the name of the default embedder configuration. /// Get the name of the default embedder configuration.
@ -153,14 +153,14 @@ impl EmbeddingConfigs {
/// - If there is only one embedder, it is always the default. /// - If there is only one embedder, it is always the default.
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder. /// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
/// - In all other cases, there is no default embedder. /// - In all other cases, there is no default embedder.
pub fn get_default_embedder_name(&self) -> Option<String> { pub fn get_default_embedder_name(&self) -> &str {
let mut it = self.0.keys(); let mut it = self.0.keys();
let first_name = it.next(); let first_name = it.next();
let second_name = it.next(); let second_name = it.next();
match (first_name, second_name) { match (first_name, second_name) {
(None, _) => None, (None, _) => "default",
(Some(first), None) => Some(first.to_owned()), (Some(first), None) => first,
(Some(_), Some(_)) => Some("default".to_owned()), (Some(_), Some(_)) => "default",
} }
} }
} }
@ -237,6 +237,17 @@ impl Embedder {
} }
} }
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text])?;
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
Ok(if embeddings.iter().nth(1).is_some() {
tracing::warn!("Ignoring embeddings past the first one in long search query");
embeddings.iter().next().unwrap().to_vec()
} else {
embeddings.into_inner()
})
}
/// Embed multiple chunks of texts. /// Embed multiple chunks of texts.
/// ///
/// Each chunk is composed of one or multiple texts. /// Each chunk is composed of one or multiple texts.