mirror of
https://github.com/meilisearch/meilisearch.git
synced 2025-01-19 01:18:31 +08:00
Merge #4548
4548: v1.8 hybrid search changes r=dureuill a=dureuill Implements the search changes from the [usage page](https://meilisearch.notion.site/v1-8-AI-search-API-usage-135552d6e85a4a52bc7109be82aeca42#40f24df3da694428a39cc8043c9cfc64) ### ⚠️ Breaking changes in an experimental feature: - Removed the `_semanticScore`. Use the `_rankingScore` instead. - Removed `vector` in the response of the search (output was too big). - Removed all the vectors from the `vectorSort` ranking score details - target vector appearing in the name of the rule - matched vector appearing in the details of the rule ### Other user-facing changes - Added `semanticHitCount`, indicating how many hits were returned from the semantic search. This is especially useful in the hybrid search. - Embed lazily: Meilisearch no longer generates an embedding when the keyword results are "good enough". - Graceful embedding failure in hybrid search: when doing hybrid search (`semanticRatio in ]0.0, 1.0[`), an embedding failure no longer causes the search request to fail. Instead, only the keyword search is performed. When doing a full vector search (`semanticRatio==1.0`), a failure to embed will still result in failing that search. Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
commit
b1844b0c27
@ -758,9 +758,9 @@ impl SearchAggregator {
|
||||
let SearchResult {
|
||||
hits: _,
|
||||
query: _,
|
||||
vector: _,
|
||||
processing_time_ms,
|
||||
hits_info: _,
|
||||
semantic_hit_count: _,
|
||||
facet_distribution: _,
|
||||
facet_stats: _,
|
||||
degraded,
|
||||
|
@ -12,6 +12,7 @@ use tracing::debug;
|
||||
use crate::analytics::{Analytics, FacetSearchAggregator};
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::routes::indexes::search::search_kind;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
@ -73,9 +74,10 @@ pub async fn search(
|
||||
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
let search_kind = search_kind(&search_query, &index_scheduler, &index, features)?;
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_facet_search(&index, search_query, facet_query, facet_name, features)
|
||||
perform_facet_search(&index, search_query, facet_query, facet_name, search_kind)
|
||||
})
|
||||
.await?;
|
||||
|
||||
|
@ -1,26 +1,26 @@
|
||||
use actix_web::web::Data;
|
||||
use actix_web::{web, HttpRequest, HttpResponse};
|
||||
use deserr::actix_web::{AwebJson, AwebQueryParameter};
|
||||
use index_scheduler::IndexScheduler;
|
||||
use index_scheduler::{IndexScheduler, RoFeatures};
|
||||
use meilisearch_types::deserr::query_params::Param;
|
||||
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli;
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::serde_cs::vec::CS;
|
||||
use serde_json::Value;
|
||||
use tracing::{debug, warn};
|
||||
use tracing::debug;
|
||||
|
||||
use crate::analytics::{Analytics, SearchAggregator};
|
||||
use crate::error::MeilisearchHttpError;
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery, SemanticRatio,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchKind, SearchQuery,
|
||||
SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
|
||||
};
|
||||
use crate::search_queue::SearchQueue;
|
||||
@ -204,12 +204,11 @@ pub async fn search_with_url_query(
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
|
||||
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
.await?;
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
}
|
||||
@ -245,12 +244,11 @@ pub async fn search_with_post(
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)?;
|
||||
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
|
||||
|
||||
let _permit = search_queue.try_get_search_permit().await?;
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
.await?;
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
if search_result.degraded {
|
||||
@ -265,76 +263,58 @@ pub async fn search_with_post(
|
||||
Ok(HttpResponse::Ok().json(search_result))
|
||||
}
|
||||
|
||||
pub fn embed(
|
||||
query: &mut SearchQuery,
|
||||
pub fn search_kind(
|
||||
query: &SearchQuery,
|
||||
index_scheduler: &IndexScheduler,
|
||||
index: &milli::Index,
|
||||
) -> Result<Option<DistributionShift>, ResponseError> {
|
||||
match (&query.hybrid, &query.vector, &query.q) {
|
||||
(Some(HybridQuery { semantic_ratio: _, embedder }), None, Some(q))
|
||||
if !q.trim().is_empty() =>
|
||||
{
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
features: RoFeatures,
|
||||
) -> Result<SearchKind, ResponseError> {
|
||||
if query.vector.is_some() {
|
||||
features.check_vector("Passing `vector` as a query parameter")?;
|
||||
}
|
||||
|
||||
let embedder = if let Some(embedder_name) = embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
if query.hybrid.is_some() {
|
||||
features.check_vector("Passing `hybrid` as a query parameter")?;
|
||||
}
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
let distribution = embedder.distribution();
|
||||
|
||||
let embeddings = embedder
|
||||
.embed(vec![q.to_owned()])
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?
|
||||
.pop()
|
||||
.expect("No vector returned from embedding");
|
||||
|
||||
if embeddings.iter().nth(1).is_some() {
|
||||
warn!("Ignoring embeddings past the first one in long search query");
|
||||
query.vector = Some(embeddings.iter().next().unwrap().to_vec());
|
||||
} else {
|
||||
query.vector = Some(embeddings.into_inner());
|
||||
}
|
||||
Ok(distribution)
|
||||
// regardless of anything, always do a keyword search when we don't have a vector and the query is whitespace or missing
|
||||
if query.vector.is_none() {
|
||||
match &query.q {
|
||||
Some(q) if q.trim().is_empty() => return Ok(SearchKind::KeywordOnly),
|
||||
None => return Ok(SearchKind::KeywordOnly),
|
||||
_ => {}
|
||||
}
|
||||
(Some(hybrid), vector, _) => {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
}
|
||||
|
||||
let embedder = if let Some(embedder_name) = &hybrid.embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
if vector.len() != embedder.dimensions() {
|
||||
return Err(meilisearch_types::milli::Error::UserError(
|
||||
meilisearch_types::milli::UserError::InvalidVectorDimensions {
|
||||
expected: embedder.dimensions(),
|
||||
found: vector.len(),
|
||||
},
|
||||
)
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
Ok(embedder.distribution())
|
||||
match &query.hybrid {
|
||||
Some(HybridQuery { semantic_ratio, embedder }) if **semantic_ratio == 1.0 => {
|
||||
Ok(SearchKind::semantic(
|
||||
index_scheduler,
|
||||
index,
|
||||
embedder.as_deref(),
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?)
|
||||
}
|
||||
_ => Ok(None),
|
||||
Some(HybridQuery { semantic_ratio, embedder: _ }) if **semantic_ratio == 0.0 => {
|
||||
Ok(SearchKind::KeywordOnly)
|
||||
}
|
||||
Some(HybridQuery { semantic_ratio, embedder }) => Ok(SearchKind::hybrid(
|
||||
index_scheduler,
|
||||
index,
|
||||
embedder.as_deref(),
|
||||
**semantic_ratio,
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?),
|
||||
None => match (query.q.as_deref(), query.vector.as_deref()) {
|
||||
(_query, None) => Ok(SearchKind::KeywordOnly),
|
||||
(None, Some(_vector)) => Ok(SearchKind::semantic(
|
||||
index_scheduler,
|
||||
index,
|
||||
None,
|
||||
query.vector.as_ref().map(Vec::len),
|
||||
)?),
|
||||
(Some(_), Some(_)) => Err(MeilisearchHttpError::MissingSearchHybrid.into()),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13,7 +13,7 @@ use crate::analytics::{Analytics, MultiSearchAggregator};
|
||||
use crate::extractors::authentication::policies::ActionPolicy;
|
||||
use crate::extractors::authentication::{AuthenticationError, GuardedData};
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::routes::indexes::search::embed;
|
||||
use crate::routes::indexes::search::search_kind;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
|
||||
};
|
||||
@ -81,14 +81,13 @@ pub async fn multi_search_with_post(
|
||||
})
|
||||
.with_index(query_index)?;
|
||||
|
||||
let distribution =
|
||||
embed(&mut query, index_scheduler.get_ref(), &index).with_index(query_index)?;
|
||||
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)
|
||||
.with_index(query_index)?;
|
||||
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_search(&index, query, features, distribution)
|
||||
})
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind))
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
|
||||
search_results.push(SearchResultWithIndex {
|
||||
index_uid: index_uid.into_inner(),
|
||||
|
@ -1,19 +1,20 @@
|
||||
use std::cmp::min;
|
||||
use std::collections::{BTreeMap, BTreeSet, HashSet};
|
||||
use std::str::FromStr;
|
||||
use std::sync::Arc;
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
use deserr::Deserr;
|
||||
use either::Either;
|
||||
use index_scheduler::RoFeatures;
|
||||
use indexmap::IndexMap;
|
||||
use meilisearch_auth::IndexSearchRules;
|
||||
use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::heed::RoTxn;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli::score_details::{self, ScoreDetails, ScoringStrategy};
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use meilisearch_types::milli::vector::Embedder;
|
||||
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget};
|
||||
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
|
||||
use meilisearch_types::{milli, Document};
|
||||
@ -90,13 +91,75 @@ pub struct SearchQuery {
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct HybridQuery {
|
||||
/// TODO validate that sementic ratio is between 0.0 and 1,0
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
|
||||
pub semantic_ratio: SemanticRatio,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||
pub embedder: Option<String>,
|
||||
}
|
||||
|
||||
pub enum SearchKind {
|
||||
KeywordOnly,
|
||||
SemanticOnly { embedder_name: String, embedder: Arc<Embedder> },
|
||||
Hybrid { embedder_name: String, embedder: Arc<Embedder>, semantic_ratio: f32 },
|
||||
}
|
||||
impl SearchKind {
|
||||
pub(crate) fn semantic(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<Self, ResponseError> {
|
||||
let (embedder_name, embedder) =
|
||||
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
|
||||
Ok(Self::SemanticOnly { embedder_name, embedder })
|
||||
}
|
||||
|
||||
pub(crate) fn hybrid(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
semantic_ratio: f32,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<Self, ResponseError> {
|
||||
let (embedder_name, embedder) =
|
||||
Self::embedder(index_scheduler, index, embedder_name, vector_len)?;
|
||||
Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio })
|
||||
}
|
||||
|
||||
fn embedder(
|
||||
index_scheduler: &index_scheduler::IndexScheduler,
|
||||
index: &Index,
|
||||
embedder_name: Option<&str>,
|
||||
vector_len: Option<usize>,
|
||||
) -> Result<(String, Arc<Embedder>), ResponseError> {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name());
|
||||
|
||||
let embedder = embedders.get(embedder_name);
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
if let Some(vector_len) = vector_len {
|
||||
if vector_len != embedder.dimensions() {
|
||||
return Err(meilisearch_types::milli::Error::UserError(
|
||||
meilisearch_types::milli::UserError::InvalidVectorDimensions {
|
||||
expected: embedder.dimensions(),
|
||||
found: vector_len,
|
||||
},
|
||||
)
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
Ok((embedder_name.to_owned(), embedder))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
|
||||
#[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
|
||||
pub struct SemanticRatio(f32);
|
||||
@ -305,8 +368,6 @@ pub struct SearchHit {
|
||||
pub ranking_score: Option<f64>,
|
||||
#[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")]
|
||||
pub ranking_score_details: Option<serde_json::Map<String, serde_json::Value>>,
|
||||
#[serde(rename = "_semanticScore", skip_serializing_if = "Option::is_none")]
|
||||
pub semantic_score: Option<f32>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
@ -314,8 +375,6 @@ pub struct SearchHit {
|
||||
pub struct SearchResult {
|
||||
pub hits: Vec<SearchHit>,
|
||||
pub query: String,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub vector: Option<Vec<f32>>,
|
||||
pub processing_time_ms: u128,
|
||||
#[serde(flatten)]
|
||||
pub hits_info: HitsInfo,
|
||||
@ -324,6 +383,9 @@ pub struct SearchResult {
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub facet_stats: Option<BTreeMap<String, FacetStats>>,
|
||||
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub semantic_hit_count: Option<u32>,
|
||||
|
||||
// These fields are only used for analytics purposes
|
||||
#[serde(skip)]
|
||||
pub degraded: bool,
|
||||
@ -386,47 +448,36 @@ fn prepare_search<'t>(
|
||||
index: &'t Index,
|
||||
rtxn: &'t RoTxn,
|
||||
query: &'t SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
search_kind: &SearchKind,
|
||||
time_budget: TimeBudget,
|
||||
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
|
||||
let mut search = index.search(rtxn);
|
||||
search.time_budget(time_budget);
|
||||
|
||||
if query.vector.is_some() {
|
||||
features.check_vector("Passing `vector` as a query parameter")?;
|
||||
}
|
||||
|
||||
if query.hybrid.is_some() {
|
||||
features.check_vector("Passing `hybrid` as a query parameter")?;
|
||||
}
|
||||
|
||||
if query.hybrid.is_none() && query.q.is_some() && query.vector.is_some() {
|
||||
return Err(MeilisearchHttpError::MissingSearchHybrid);
|
||||
}
|
||||
|
||||
search.distribution_shift(distribution);
|
||||
|
||||
if let Some(ref vector) = query.vector {
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 0.0, only the query search will impact the search results,
|
||||
// skip the vector
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 0.0 => (),
|
||||
_otherwise => {
|
||||
search.vector(vector.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref q) = query.q {
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 1.0, only the vector search will impact the search results,
|
||||
// skip the query
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 1.0 => (),
|
||||
_otherwise => {
|
||||
match search_kind {
|
||||
SearchKind::KeywordOnly => {
|
||||
if let Some(q) = &query.q {
|
||||
search.query(q);
|
||||
}
|
||||
}
|
||||
SearchKind::SemanticOnly { embedder_name, embedder } => {
|
||||
let vector = match query.vector.clone() {
|
||||
Some(vector) => vector,
|
||||
None => embedder
|
||||
.embed_one(query.q.clone().unwrap())
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?,
|
||||
};
|
||||
|
||||
search.semantic(embedder_name.clone(), embedder.clone(), Some(vector));
|
||||
}
|
||||
SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => {
|
||||
if let Some(q) = &query.q {
|
||||
search.query(q);
|
||||
}
|
||||
// will be embedded in hybrid search if necessary
|
||||
search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone());
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref searchable) = query.attributes_to_search_on {
|
||||
@ -449,10 +500,6 @@ fn prepare_search<'t>(
|
||||
ScoringStrategy::Skip
|
||||
});
|
||||
|
||||
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
|
||||
search.embedder_name(embedder);
|
||||
}
|
||||
|
||||
// compute the offset on the limit depending on the pagination mode.
|
||||
let (offset, limit) = if is_finite_pagination {
|
||||
let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
|
||||
@ -495,8 +542,7 @@ fn prepare_search<'t>(
|
||||
pub fn perform_search(
|
||||
index: &Index,
|
||||
query: SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
search_kind: SearchKind,
|
||||
) -> Result<SearchResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
@ -506,22 +552,26 @@ pub fn perform_search(
|
||||
};
|
||||
|
||||
let (search, is_finite_pagination, max_total_hits, offset) =
|
||||
prepare_search(index, &rtxn, &query, features, distribution, time_budget)?;
|
||||
prepare_search(index, &rtxn, &query, &search_kind, time_budget)?;
|
||||
|
||||
let milli::SearchResult {
|
||||
documents_ids,
|
||||
matching_words,
|
||||
candidates,
|
||||
document_scores,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
..
|
||||
} = match &query.hybrid {
|
||||
Some(hybrid) => match *hybrid.semantic_ratio {
|
||||
ratio if ratio == 0.0 || ratio == 1.0 => search.execute()?,
|
||||
ratio => search.execute_hybrid(ratio)?,
|
||||
let (
|
||||
milli::SearchResult {
|
||||
documents_ids,
|
||||
matching_words,
|
||||
candidates,
|
||||
document_scores,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
},
|
||||
None => search.execute()?,
|
||||
semantic_hit_count,
|
||||
) = match &search_kind {
|
||||
SearchKind::KeywordOnly => (search.execute()?, None),
|
||||
SearchKind::SemanticOnly { .. } => {
|
||||
let results = search.execute()?;
|
||||
let semantic_hit_count = results.document_scores.len() as u32;
|
||||
(results, Some(semantic_hit_count))
|
||||
}
|
||||
SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?,
|
||||
};
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||
@ -631,18 +681,6 @@ pub fn perform_search(
|
||||
insert_geo_distance(sort, &mut document);
|
||||
}
|
||||
|
||||
let mut semantic_score = None;
|
||||
for details in &score {
|
||||
if let ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: _,
|
||||
value_similarity: Some((_matching_vector, similarity)),
|
||||
}) = details
|
||||
{
|
||||
semantic_score = Some(*similarity);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let ranking_score =
|
||||
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
|
||||
let ranking_score_details =
|
||||
@ -654,7 +692,6 @@ pub fn perform_search(
|
||||
matches_position,
|
||||
ranking_score_details,
|
||||
ranking_score,
|
||||
semantic_score,
|
||||
};
|
||||
documents.push(hit);
|
||||
}
|
||||
@ -715,12 +752,12 @@ pub fn perform_search(
|
||||
hits: documents,
|
||||
hits_info,
|
||||
query: query.q.unwrap_or_default(),
|
||||
vector: query.vector,
|
||||
processing_time_ms: before_search.elapsed().as_millis(),
|
||||
facet_distribution,
|
||||
facet_stats,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
semantic_hit_count,
|
||||
};
|
||||
Ok(result)
|
||||
}
|
||||
@ -730,7 +767,7 @@ pub fn perform_facet_search(
|
||||
search_query: SearchQuery,
|
||||
facet_query: Option<String>,
|
||||
facet_name: String,
|
||||
features: RoFeatures,
|
||||
search_kind: SearchKind,
|
||||
) -> Result<FacetSearchResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
@ -739,10 +776,12 @@ pub fn perform_facet_search(
|
||||
None => TimeBudget::default(),
|
||||
};
|
||||
|
||||
let (search, _, _, _) =
|
||||
prepare_search(index, &rtxn, &search_query, features, None, time_budget)?;
|
||||
let mut facet_search =
|
||||
SearchForFacetValues::new(facet_name, search, search_query.hybrid.is_some());
|
||||
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, &search_kind, time_budget)?;
|
||||
let mut facet_search = SearchForFacetValues::new(
|
||||
facet_name,
|
||||
search,
|
||||
matches!(search_kind, SearchKind::Hybrid { .. }),
|
||||
);
|
||||
if let Some(facet_query) = &facet_query {
|
||||
facet_search.query(facet_query);
|
||||
}
|
||||
|
@ -77,14 +77,25 @@ async fn simple_search() {
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"0");
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}}),
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_semanticScore":0.9472136}]"###);
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"1");
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"3");
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
@ -95,7 +106,7 @@ async fn distribution_shift() {
|
||||
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}});
|
||||
let (response, code) = index.search_post(search.clone()).await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444,"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669,"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112,"_semanticScore":0.9472136}]"###);
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
|
||||
|
||||
let (response, code) = index
|
||||
.update_settings(json!({
|
||||
@ -116,7 +127,7 @@ async fn distribution_shift() {
|
||||
|
||||
let (response, code) = index.search_post(search).await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.19161224365234375,"_semanticScore":0.19161224},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.1920928955078125e-7,"_semanticScore":1.1920929e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.1920928955078125e-7,"_semanticScore":1.1920929e-7}]"###);
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.19161224365234375},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.1920928955078125e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.1920928955078125e-7}]"###);
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
@ -136,10 +147,12 @@ async fn highlighter() {
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}}}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"0");
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
|
||||
"hybrid": {"semanticRatio": 0.8},
|
||||
"showRankingScore": true,
|
||||
"attributesToHighlight": [
|
||||
"desc"
|
||||
],
|
||||
@ -148,12 +161,14 @@ async fn highlighter() {
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_semanticScore":0.9472136}]"###);
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"3");
|
||||
|
||||
// no highlighting on full semantic
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
|
||||
"hybrid": {"semanticRatio": 1.0},
|
||||
"showRankingScore": true,
|
||||
"attributesToHighlight": [
|
||||
"desc"
|
||||
],
|
||||
@ -162,7 +177,8 @@ async fn highlighter() {
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}}]"###);
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"3");
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
@ -249,5 +265,115 @@ async fn single_document() {
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0,"_semanticScore":1.0}"###);
|
||||
snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0}"###);
|
||||
snapshot!(response["semanticHitCount"], @"1");
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn query_combination() {
|
||||
let server = Server::new().await;
|
||||
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
|
||||
|
||||
// search without query and vector, but with hybrid => still placeholder
|
||||
let (response, code) = index
|
||||
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"null");
|
||||
|
||||
// same with a different semantic ratio
|
||||
let (response, code) = index
|
||||
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"null");
|
||||
|
||||
// wrong vector dimensions
|
||||
let (response, code) = index
|
||||
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid vector dimensions: expected: `2`, found: `3`.",
|
||||
"code": "invalid_vector_dimensions",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_vector_dimensions"
|
||||
}
|
||||
"###);
|
||||
|
||||
// full vector
|
||||
let (response, code) = index
|
||||
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.7773500680923462},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.7236068248748779},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.6581138968467712}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"3");
|
||||
|
||||
// full keyword, without a query
|
||||
let (response, code) = index
|
||||
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"null");
|
||||
|
||||
// query + vector, full keyword => keyword
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.996969696969697},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.996969696969697},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.8848484848484849}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"null");
|
||||
|
||||
// query + vector, no hybrid keyword =>
|
||||
let (response, code) = index
|
||||
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "showRankingScore": true}))
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.",
|
||||
"code": "missing_search_hybrid",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#missing_search_hybrid"
|
||||
}
|
||||
"###);
|
||||
|
||||
// full vector, without a vector => error
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}),
|
||||
)
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Error while generating embeddings: user error: attempt to embed the following text in a configuration where embeddings must be user provided: \"Captain\"",
|
||||
"code": "vector_embedding_error",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
|
||||
}
|
||||
"###);
|
||||
|
||||
// hybrid without a vector => full keyword
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true}),
|
||||
)
|
||||
.await;
|
||||
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848}]"###);
|
||||
snapshot!(response["semanticHitCount"], @"0");
|
||||
}
|
||||
|
@ -1040,6 +1040,7 @@ async fn experimental_feature_vector_store() {
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"showRankingScore": true
|
||||
}))
|
||||
.await;
|
||||
meili_snap::snapshot!(code, @"400 Bad Request");
|
||||
@ -1082,6 +1083,7 @@ async fn experimental_feature_vector_store() {
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"showRankingScore": true,
|
||||
}))
|
||||
.await;
|
||||
|
||||
@ -1099,7 +1101,7 @@ async fn experimental_feature_vector_store() {
|
||||
3
|
||||
]
|
||||
},
|
||||
"_semanticScore": 1.0
|
||||
"_rankingScore": 1.0
|
||||
},
|
||||
{
|
||||
"title": "Captain Marvel",
|
||||
@ -1111,7 +1113,7 @@ async fn experimental_feature_vector_store() {
|
||||
54
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.9129112
|
||||
"_rankingScore": 0.9129111766815186
|
||||
},
|
||||
{
|
||||
"title": "Gläss",
|
||||
@ -1123,7 +1125,7 @@ async fn experimental_feature_vector_store() {
|
||||
90
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.8106413
|
||||
"_rankingScore": 0.8106412887573242
|
||||
},
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
@ -1135,7 +1137,7 @@ async fn experimental_feature_vector_store() {
|
||||
32
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.74120104
|
||||
"_rankingScore": 0.7412010431289673
|
||||
},
|
||||
{
|
||||
"title": "Escape Room",
|
||||
@ -1146,7 +1148,8 @@ async fn experimental_feature_vector_store() {
|
||||
-23,
|
||||
32
|
||||
]
|
||||
}
|
||||
},
|
||||
"_rankingScore": 0.6972063183784485
|
||||
}
|
||||
]
|
||||
"###);
|
||||
|
@ -196,7 +196,7 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
|
||||
InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError),
|
||||
#[error("Too many embedders in the configuration. Found {0}, but limited to 256.")]
|
||||
TooManyEmbedders(usize),
|
||||
#[error("Cannot find embedder with name {0}.")]
|
||||
#[error("Cannot find embedder with name `{0}`.")]
|
||||
InvalidEmbedder(String),
|
||||
#[error("Too many vectors for document with id {0}: found {1}, but limited to 256.")]
|
||||
TooManyVectors(String, usize),
|
||||
|
@ -1499,14 +1499,6 @@ impl Index {
|
||||
.unwrap_or_default())
|
||||
}
|
||||
|
||||
pub fn default_embedding_name(&self, rtxn: &RoTxn<'_>) -> Result<String> {
|
||||
let configs = self.embedding_configs(rtxn)?;
|
||||
Ok(match configs.as_slice() {
|
||||
[(ref first_name, _)] => first_name.clone(),
|
||||
_ => "default".to_owned(),
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn put_search_cutoff(&self, wtxn: &mut RwTxn<'_>, cutoff: u64) -> heed::Result<()> {
|
||||
self.main.remap_types::<Str, BEU64>().put(wtxn, main_key::SEARCH_CUTOFF, &cutoff)
|
||||
}
|
||||
|
@ -61,7 +61,7 @@ pub use self::index::Index;
|
||||
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
||||
pub use self::search::{
|
||||
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
||||
Search, SearchResult, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
};
|
||||
|
||||
pub type Result<T> = std::result::Result<T, error::Error>;
|
||||
|
@ -98,9 +98,9 @@ impl ScoreDetails {
|
||||
ScoreDetails::ExactWords(e) => RankOrValue::Rank(e.rank()),
|
||||
ScoreDetails::Sort(sort) => RankOrValue::Sort(sort),
|
||||
ScoreDetails::GeoSort(geosort) => RankOrValue::GeoSort(geosort),
|
||||
ScoreDetails::Vector(vector) => RankOrValue::Score(
|
||||
vector.value_similarity.as_ref().map(|(_, s)| *s as f64).unwrap_or(0.0f64),
|
||||
),
|
||||
ScoreDetails::Vector(vector) => {
|
||||
RankOrValue::Score(vector.similarity.as_ref().map(|s| *s as f64).unwrap_or(0.0f64))
|
||||
}
|
||||
ScoreDetails::Skipped => RankOrValue::Rank(Rank { rank: 0, max_rank: 1 }),
|
||||
}
|
||||
}
|
||||
@ -249,16 +249,13 @@ impl ScoreDetails {
|
||||
order += 1;
|
||||
}
|
||||
ScoreDetails::Vector(s) => {
|
||||
let vector = format!("vectorSort({:?})", s.target_vector);
|
||||
let value = s.value_similarity.as_ref().map(|(v, _)| v);
|
||||
let similarity = s.value_similarity.as_ref().map(|(_, s)| s);
|
||||
let similarity = s.similarity.as_ref();
|
||||
|
||||
let details = serde_json::json!({
|
||||
"order": order,
|
||||
"value": value,
|
||||
"similarity": similarity,
|
||||
});
|
||||
details_map.insert(vector, details);
|
||||
details_map.insert("vectorSort".into(), details);
|
||||
order += 1;
|
||||
}
|
||||
ScoreDetails::Skipped => {
|
||||
@ -494,8 +491,7 @@ impl PartialOrd for GeoSort {
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, PartialOrd)]
|
||||
pub struct Vector {
|
||||
pub target_vector: Vec<f32>,
|
||||
pub value_similarity: Option<(Vec<f32>, f32)>,
|
||||
pub similarity: Option<f32>,
|
||||
}
|
||||
|
||||
impl GeoSort {
|
||||
|
@ -92,9 +92,15 @@ impl<'a> SearchForFacetValues<'a> {
|
||||
None => return Ok(Vec::new()),
|
||||
};
|
||||
|
||||
let search_candidates = self
|
||||
.search_query
|
||||
.execute_for_candidates(self.is_hybrid || self.search_query.vector.is_some())?;
|
||||
let search_candidates = self.search_query.execute_for_candidates(
|
||||
self.is_hybrid
|
||||
|| self
|
||||
.search_query
|
||||
.semantic
|
||||
.as_ref()
|
||||
.and_then(|semantic| semantic.vector.as_ref())
|
||||
.is_some(),
|
||||
)?;
|
||||
|
||||
let mut results = match index.sort_facet_values_by(rtxn)?.get(&self.facet) {
|
||||
OrderBy::Lexicographic => ValuesCollection::by_lexicographic(self.max_values),
|
||||
|
@ -4,6 +4,7 @@ use itertools::Itertools;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
|
||||
use crate::search::SemanticSearch;
|
||||
use crate::{MatchingWords, Result, Search, SearchResult};
|
||||
|
||||
struct ScoreWithRatioResult {
|
||||
@ -83,50 +84,77 @@ impl ScoreWithRatioResult {
|
||||
}
|
||||
}
|
||||
|
||||
fn merge(left: Self, right: Self, from: usize, length: usize) -> SearchResult {
|
||||
let mut documents_ids =
|
||||
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
|
||||
let mut document_scores =
|
||||
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
|
||||
fn merge(
|
||||
vector_results: Self,
|
||||
keyword_results: Self,
|
||||
from: usize,
|
||||
length: usize,
|
||||
) -> (SearchResult, u32) {
|
||||
#[derive(Clone, Copy)]
|
||||
enum ResultSource {
|
||||
Semantic,
|
||||
Keyword,
|
||||
}
|
||||
let mut semantic_hit_count = 0;
|
||||
|
||||
let mut documents_ids = Vec::with_capacity(
|
||||
vector_results.document_scores.len() + keyword_results.document_scores.len(),
|
||||
);
|
||||
let mut document_scores = Vec::with_capacity(
|
||||
vector_results.document_scores.len() + keyword_results.document_scores.len(),
|
||||
);
|
||||
|
||||
let mut documents_seen = RoaringBitmap::new();
|
||||
for (docid, (main_score, _sub_score)) in left
|
||||
for ((docid, (main_score, _sub_score)), source) in vector_results
|
||||
.document_scores
|
||||
.into_iter()
|
||||
.merge_by(right.document_scores.into_iter(), |(_, left), (_, right)| {
|
||||
// the first value is the one with the greatest score
|
||||
compare_scores(left, right).is_ge()
|
||||
})
|
||||
.zip(std::iter::repeat(ResultSource::Semantic))
|
||||
.merge_by(
|
||||
keyword_results
|
||||
.document_scores
|
||||
.into_iter()
|
||||
.zip(std::iter::repeat(ResultSource::Keyword)),
|
||||
|((_, left), _), ((_, right), _)| {
|
||||
// the first value is the one with the greatest score
|
||||
compare_scores(left, right).is_ge()
|
||||
},
|
||||
)
|
||||
// remove documents we already saw
|
||||
.filter(|(docid, _)| documents_seen.insert(*docid))
|
||||
.filter(|((docid, _), _)| documents_seen.insert(*docid))
|
||||
// start skipping **after** the filter
|
||||
.skip(from)
|
||||
// take **after** skipping
|
||||
.take(length)
|
||||
{
|
||||
if let ResultSource::Semantic = source {
|
||||
semantic_hit_count += 1;
|
||||
}
|
||||
documents_ids.push(docid);
|
||||
// TODO: pass both scores to documents_score in some way?
|
||||
document_scores.push(main_score);
|
||||
}
|
||||
|
||||
SearchResult {
|
||||
matching_words: right.matching_words,
|
||||
candidates: left.candidates | right.candidates,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
degraded: left.degraded | right.degraded,
|
||||
used_negative_operator: left.used_negative_operator | right.used_negative_operator,
|
||||
}
|
||||
(
|
||||
SearchResult {
|
||||
matching_words: keyword_results.matching_words,
|
||||
candidates: vector_results.candidates | keyword_results.candidates,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
degraded: vector_results.degraded | keyword_results.degraded,
|
||||
used_negative_operator: vector_results.used_negative_operator
|
||||
| keyword_results.used_negative_operator,
|
||||
},
|
||||
semantic_hit_count,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<SearchResult> {
|
||||
pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<(SearchResult, Option<u32>)> {
|
||||
// TODO: find classier way to achieve that than to reset vector and query params
|
||||
// create separate keyword and semantic searches
|
||||
let mut search = Search {
|
||||
query: self.query.clone(),
|
||||
vector: self.vector.clone(),
|
||||
filter: self.filter.clone(),
|
||||
offset: 0,
|
||||
limit: self.limit + self.offset,
|
||||
@ -139,26 +167,43 @@ impl<'a> Search<'a> {
|
||||
exhaustive_number_hits: self.exhaustive_number_hits,
|
||||
rtxn: self.rtxn,
|
||||
index: self.index,
|
||||
distribution_shift: self.distribution_shift,
|
||||
embedder_name: self.embedder_name.clone(),
|
||||
semantic: self.semantic.clone(),
|
||||
time_budget: self.time_budget.clone(),
|
||||
};
|
||||
|
||||
let vector_query = search.vector.take();
|
||||
let semantic = search.semantic.take();
|
||||
let keyword_results = search.execute()?;
|
||||
|
||||
// skip semantic search if we don't have a vector query (placeholder search)
|
||||
let Some(vector_query) = vector_query else {
|
||||
return Ok(keyword_results);
|
||||
};
|
||||
|
||||
// completely skip semantic search if the results of the keyword search are good enough
|
||||
if self.results_good_enough(&keyword_results, semantic_ratio) {
|
||||
return Ok(keyword_results);
|
||||
return Ok((keyword_results, Some(0)));
|
||||
}
|
||||
|
||||
search.vector = Some(vector_query);
|
||||
search.query = None;
|
||||
// no vector search against placeholder search
|
||||
let Some(query) = search.query.take() else {
|
||||
return Ok((keyword_results, Some(0)));
|
||||
};
|
||||
// no embedder, no semantic search
|
||||
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
|
||||
return Ok((keyword_results, Some(0)));
|
||||
};
|
||||
|
||||
let vector_query = match vector {
|
||||
Some(vector_query) => vector_query,
|
||||
None => {
|
||||
// attempt to embed the vector
|
||||
match embedder.embed_one(query) {
|
||||
Ok(embedding) => embedding,
|
||||
Err(error) => {
|
||||
tracing::error!(error=%error, "Embedding failed");
|
||||
return Ok((keyword_results, Some(0)));
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
search.semantic =
|
||||
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
|
||||
|
||||
// TODO: would be better to have two distinct functions at this point
|
||||
let vector_results = search.execute()?;
|
||||
@ -166,10 +211,10 @@ impl<'a> Search<'a> {
|
||||
let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio);
|
||||
let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio);
|
||||
|
||||
let merge_results =
|
||||
let (merge_results, semantic_hit_count) =
|
||||
ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit);
|
||||
assert!(merge_results.documents_ids.len() <= self.limit);
|
||||
Ok(merge_results)
|
||||
Ok((merge_results, Some(semantic_hit_count)))
|
||||
}
|
||||
|
||||
fn results_good_enough(&self, keyword_results: &SearchResult, semantic_ratio: f32) -> bool {
|
||||
|
@ -1,4 +1,5 @@
|
||||
use std::fmt;
|
||||
use std::sync::Arc;
|
||||
|
||||
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
|
||||
use once_cell::sync::Lazy;
|
||||
@ -8,7 +9,7 @@ pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FAC
|
||||
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
|
||||
use self::new::{execute_vector_search, PartialSearchResult};
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::Embedder;
|
||||
use crate::{
|
||||
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Index, Result,
|
||||
SearchContext, TimeBudget,
|
||||
@ -24,9 +25,15 @@ mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SemanticSearch {
|
||||
vector: Option<Vec<f32>>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
}
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
vector: Option<Vec<f32>>,
|
||||
// this should be linked to the String in the query
|
||||
filter: Option<Filter<'a>>,
|
||||
offset: usize,
|
||||
@ -38,12 +45,9 @@ pub struct Search<'a> {
|
||||
scoring_strategy: ScoringStrategy,
|
||||
words_limit: usize,
|
||||
exhaustive_number_hits: bool,
|
||||
/// TODO: Add semantic ratio or pass it directly to execute_hybrid()
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: Option<String>,
|
||||
|
||||
semantic: Option<SemanticSearch>,
|
||||
time_budget: TimeBudget,
|
||||
}
|
||||
|
||||
@ -51,7 +55,6 @@ impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn, index: &'a Index) -> Search<'a> {
|
||||
Search {
|
||||
query: None,
|
||||
vector: None,
|
||||
filter: None,
|
||||
offset: 0,
|
||||
limit: 20,
|
||||
@ -64,8 +67,7 @@ impl<'a> Search<'a> {
|
||||
words_limit: 10,
|
||||
rtxn,
|
||||
index,
|
||||
distribution_shift: None,
|
||||
embedder_name: None,
|
||||
semantic: None,
|
||||
time_budget: TimeBudget::max(),
|
||||
}
|
||||
}
|
||||
@ -75,8 +77,13 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn vector(&mut self, vector: Vec<f32>) -> &mut Search<'a> {
|
||||
self.vector = Some(vector);
|
||||
pub fn semantic(
|
||||
&mut self,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
vector: Option<Vec<f32>>,
|
||||
) -> &mut Search<'a> {
|
||||
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
|
||||
self
|
||||
}
|
||||
|
||||
@ -133,19 +140,6 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn distribution_shift(
|
||||
&mut self,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
) -> &mut Search<'a> {
|
||||
self.distribution_shift = distribution_shift;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn embedder_name(&mut self, embedder_name: impl Into<String>) -> &mut Search<'a> {
|
||||
self.embedder_name = Some(embedder_name.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> {
|
||||
self.time_budget = time_budget;
|
||||
self
|
||||
@ -161,15 +155,6 @@ impl<'a> Search<'a> {
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let embedder_name;
|
||||
let embedder_name = match &self.embedder_name {
|
||||
Some(embedder_name) => embedder_name,
|
||||
None => {
|
||||
embedder_name = self.index.default_embedding_name(self.rtxn)?;
|
||||
&embedder_name
|
||||
}
|
||||
};
|
||||
|
||||
let mut ctx = SearchContext::new(self.index, self.rtxn);
|
||||
|
||||
if let Some(searchable_attributes) = self.searchable_attributes {
|
||||
@ -184,21 +169,23 @@ impl<'a> Search<'a> {
|
||||
document_scores,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
} = match self.vector.as_ref() {
|
||||
Some(vector) => execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
self.distribution_shift,
|
||||
embedder_name,
|
||||
self.time_budget.clone(),
|
||||
)?,
|
||||
None => execute_search(
|
||||
} = match self.semantic.as_ref() {
|
||||
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
|
||||
execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
embedder_name,
|
||||
embedder,
|
||||
self.time_budget.clone(),
|
||||
)?
|
||||
}
|
||||
_ => execute_search(
|
||||
&mut ctx,
|
||||
self.query.as_deref(),
|
||||
self.terms_matching_strategy,
|
||||
@ -237,7 +224,6 @@ impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let Search {
|
||||
query,
|
||||
vector: _,
|
||||
filter,
|
||||
offset,
|
||||
limit,
|
||||
@ -250,8 +236,7 @@ impl fmt::Debug for Search<'_> {
|
||||
exhaustive_number_hits,
|
||||
rtxn: _,
|
||||
index: _,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
semantic,
|
||||
time_budget,
|
||||
} = self;
|
||||
f.debug_struct("Search")
|
||||
@ -266,8 +251,10 @@ impl fmt::Debug for Search<'_> {
|
||||
.field("scoring_strategy", scoring_strategy)
|
||||
.field("exhaustive_number_hits", exhaustive_number_hits)
|
||||
.field("words_limit", words_limit)
|
||||
.field("distribution_shift", distribution_shift)
|
||||
.field("embedder_name", embedder_name)
|
||||
.field(
|
||||
"semantic.embedder_name",
|
||||
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
|
||||
)
|
||||
.field("time_budget", time_budget)
|
||||
.finish()
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ use self::vector_sort::VectorSort;
|
||||
use crate::error::FieldIdMapMissingEntry;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::Embedder;
|
||||
use crate::{
|
||||
AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, TimeBudget,
|
||||
UserError,
|
||||
@ -298,8 +298,8 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
limit_plus_offset: usize,
|
||||
target: &[f32],
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
|
||||
// query graph search
|
||||
|
||||
@ -325,8 +325,8 @@ fn get_ranking_rules_for_vector<'ctx>(
|
||||
target.to_vec(),
|
||||
vector_candidates,
|
||||
limit_plus_offset,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
embedder,
|
||||
)?;
|
||||
ranking_rules.push(Box::new(vector_sort));
|
||||
vector = true;
|
||||
@ -548,8 +548,8 @@ pub fn execute_vector_search(
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
length: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
time_budget: TimeBudget,
|
||||
) -> Result<PartialSearchResult> {
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
@ -562,8 +562,8 @@ pub fn execute_vector_search(
|
||||
geo_strategy,
|
||||
from + length,
|
||||
vector,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
embedder,
|
||||
)?;
|
||||
|
||||
let mut placeholder_search_logger = logger::DefaultSearchLogger;
|
||||
|
@ -5,14 +5,14 @@ use roaring::RoaringBitmap;
|
||||
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::vector::{DistributionShift, Embedder};
|
||||
use crate::{DocumentId, Result, SearchContext, SearchLogger};
|
||||
|
||||
pub struct VectorSort<Q: RankingRuleQueryTrait> {
|
||||
query: Option<Q>,
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
cached_sorted_docids: std::vec::IntoIter<(DocumentId, f32, Vec<f32>)>,
|
||||
cached_sorted_docids: std::vec::IntoIter<(DocumentId, f32)>,
|
||||
limit: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_index: u8,
|
||||
@ -24,8 +24,8 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
limit: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
embedder: &Embedder,
|
||||
) -> Result<Self> {
|
||||
let embedder_index = ctx
|
||||
.index
|
||||
@ -39,7 +39,7 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
vector_candidates,
|
||||
cached_sorted_docids: Default::default(),
|
||||
limit,
|
||||
distribution_shift,
|
||||
distribution_shift: embedder.distribution(),
|
||||
embedder_index,
|
||||
})
|
||||
}
|
||||
@ -70,14 +70,9 @@ impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
for reader in readers.iter() {
|
||||
let nns_by_vector =
|
||||
reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?;
|
||||
let vectors: std::result::Result<Vec<_>, _> = nns_by_vector
|
||||
.iter()
|
||||
.map(|(docid, _)| reader.item_vector(ctx.txn, *docid).transpose().unwrap())
|
||||
.collect();
|
||||
let vectors = vectors?;
|
||||
results.extend(nns_by_vector.into_iter().zip(vectors).map(|((x, y), z)| (x, y, z)));
|
||||
results.extend(nns_by_vector.into_iter());
|
||||
}
|
||||
results.sort_unstable_by_key(|(_, distance, _)| OrderedFloat(*distance));
|
||||
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
|
||||
self.cached_sorted_docids = results.into_iter();
|
||||
|
||||
Ok(())
|
||||
@ -118,14 +113,11 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
score: ScoreDetails::Vector(score_details::Vector { similarity: None }),
|
||||
}));
|
||||
}
|
||||
|
||||
for (docid, distance, vector) in self.cached_sorted_docids.by_ref() {
|
||||
for (docid, distance) in self.cached_sorted_docids.by_ref() {
|
||||
if vector_candidates.contains(docid) {
|
||||
let score = 1.0 - distance;
|
||||
let score = self
|
||||
@ -135,10 +127,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: RoaringBitmap::from_iter([docid]),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: Some((vector, score)),
|
||||
}),
|
||||
score: ScoreDetails::Vector(score_details::Vector { similarity: Some(score) }),
|
||||
}));
|
||||
}
|
||||
}
|
||||
@ -154,10 +143,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
score: ScoreDetails::Vector(score_details::Vector { similarity: None }),
|
||||
}));
|
||||
}
|
||||
|
||||
|
@ -2672,7 +2672,16 @@ mod tests {
|
||||
.unwrap();
|
||||
|
||||
let rtxn = index.read_txn().unwrap();
|
||||
let res = index.search(&rtxn).vector([0.0, 1.0, 2.0].to_vec()).execute().unwrap();
|
||||
let mut embedding_configs = index.embedding_configs(&rtxn).unwrap();
|
||||
let (embedder_name, embedder) = embedding_configs.pop().unwrap();
|
||||
let embedder =
|
||||
std::sync::Arc::new(crate::vector::Embedder::new(embedder.embedder_options).unwrap());
|
||||
assert_eq!("manual", embedder_name);
|
||||
let res = index
|
||||
.search(&rtxn)
|
||||
.semantic(embedder_name, embedder, Some([0.0, 1.0, 2.0].to_vec()))
|
||||
.execute()
|
||||
.unwrap();
|
||||
assert_eq!(res.documents_ids.len(), 3);
|
||||
}
|
||||
|
||||
|
@ -58,7 +58,7 @@ pub enum EmbedErrorKind {
|
||||
RestResponseDeserialization(std::io::Error),
|
||||
#[error("component `{0}` not found in path `{1}` in response: `{2}`")]
|
||||
RestResponseMissingEmbeddings(String, String, String),
|
||||
#[error("expected a response parseable as a vector or an array of vectors: {0}")]
|
||||
#[error("unexpected format of the embedding response: {0}")]
|
||||
RestResponseFormat(serde_json::Error),
|
||||
#[error("expected a response containing {0} embeddings, got only {1}")]
|
||||
RestResponseEmbeddingCount(usize, usize),
|
||||
@ -78,6 +78,8 @@ pub enum EmbedErrorKind {
|
||||
RestNotAnObject(serde_json::Value, Vec<String>),
|
||||
#[error("while embedding tokenized, was expecting embeddings of dimension `{0}`, got embeddings of dimensions `{1}`")]
|
||||
OpenAiUnexpectedDimension(usize, usize),
|
||||
#[error("no embedding was produced")]
|
||||
MissingEmbedding,
|
||||
}
|
||||
|
||||
impl EmbedError {
|
||||
@ -190,6 +192,9 @@ impl EmbedError {
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
pub(crate) fn missing_embedding() -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::MissingEmbedding, fault: FaultSource::Undecided }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
|
@ -143,7 +143,7 @@ impl EmbeddingConfigs {
|
||||
|
||||
/// Get the default embedder configuration, if any.
|
||||
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.get_default_embedder_name().and_then(|default| self.get(&default))
|
||||
self.get(self.get_default_embedder_name())
|
||||
}
|
||||
|
||||
/// Get the name of the default embedder configuration.
|
||||
@ -153,14 +153,14 @@ impl EmbeddingConfigs {
|
||||
/// - If there is only one embedder, it is always the default.
|
||||
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
|
||||
/// - In all other cases, there is no default embedder.
|
||||
pub fn get_default_embedder_name(&self) -> Option<String> {
|
||||
pub fn get_default_embedder_name(&self) -> &str {
|
||||
let mut it = self.0.keys();
|
||||
let first_name = it.next();
|
||||
let second_name = it.next();
|
||||
match (first_name, second_name) {
|
||||
(None, _) => None,
|
||||
(Some(first), None) => Some(first.to_owned()),
|
||||
(Some(_), Some(_)) => Some("default".to_owned()),
|
||||
(None, _) => "default",
|
||||
(Some(first), None) => first,
|
||||
(Some(_), Some(_)) => "default",
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -237,6 +237,17 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
|
||||
let mut embeddings = self.embed(vec![text])?;
|
||||
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
|
||||
Ok(if embeddings.iter().nth(1).is_some() {
|
||||
tracing::warn!("Ignoring embeddings past the first one in long search query");
|
||||
embeddings.iter().next().unwrap().to_vec()
|
||||
} else {
|
||||
embeddings.into_inner()
|
||||
})
|
||||
}
|
||||
|
||||
/// Embed multiple chunks of texts.
|
||||
///
|
||||
/// Each chunk is composed of one or multiple texts.
|
||||
|
Loading…
Reference in New Issue
Block a user