mirror of
https://github.com/meilisearch/meilisearch.git
synced 2024-11-26 20:15:07 +08:00
Introduce plane_sweep function in proximity criterion
This commit is contained in:
parent
636a9df177
commit
ae47bb3594
@ -5,7 +5,7 @@ use anyhow::bail;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::search::word_derivations;
|
||||
use crate::Index;
|
||||
use crate::{DocumentId, Index};
|
||||
|
||||
use super::query_tree::{Operation, Query, QueryKind};
|
||||
use self::typo::Typo;
|
||||
@ -66,6 +66,7 @@ pub trait Context {
|
||||
fn word_prefix_pair_proximity_docids(&self, left: &str, right: &str, proximity: u8) -> heed::Result<Option<RoaringBitmap>>;
|
||||
fn words_fst<'t>(&self) -> &'t fst::Set<Cow<[u8]>>;
|
||||
fn in_prefix_cache(&self, word: &str) -> bool;
|
||||
fn docid_word_positions(&self, docid: DocumentId, word: &str) -> heed::Result<Option<RoaringBitmap>>;
|
||||
}
|
||||
pub struct CriteriaBuilder<'t> {
|
||||
rtxn: &'t heed::RoTxn<'t>,
|
||||
@ -104,6 +105,11 @@ impl<'a> Context for CriteriaBuilder<'a> {
|
||||
fn in_prefix_cache(&self, word: &str) -> bool {
|
||||
self.words_prefixes_fst.contains(word)
|
||||
}
|
||||
|
||||
fn docid_word_positions(&self, docid: DocumentId, word: &str) -> heed::Result<Option<RoaringBitmap>> {
|
||||
let key = (docid, word);
|
||||
self.index.docid_word_positions.get(self.rtxn, &key)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'t> CriteriaBuilder<'t> {
|
||||
@ -368,6 +374,10 @@ pub mod test {
|
||||
fn in_prefix_cache(&self, word: &str) -> bool {
|
||||
self.word_prefix_docids.contains_key(&word.to_string())
|
||||
}
|
||||
|
||||
fn docid_word_positions(&self, _docid: DocumentId, _word: &str) -> heed::Result<Option<RoaringBitmap>> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Default for TestContext<'a> {
|
||||
|
@ -1,9 +1,10 @@
|
||||
use std::collections::HashMap;
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::mem::take;
|
||||
|
||||
use roaring::RoaringBitmap;
|
||||
use log::debug;
|
||||
|
||||
use crate::{DocumentId, Position, search::{query_tree::QueryKind, word_derivations}};
|
||||
use crate::search::query_tree::{maximum_proximity, Operation, Query};
|
||||
use super::{Candidates, Criterion, CriterionResult, Context, query_docids, query_pair_proximity_docids};
|
||||
|
||||
@ -289,3 +290,178 @@ fn resolve_candidates<'t>(
|
||||
}
|
||||
Ok(candidates)
|
||||
}
|
||||
|
||||
fn resolve_plane_sweep_candidates<'t>(
|
||||
ctx: &'t dyn Context,
|
||||
query_tree: &Operation,
|
||||
allowed_candidates: &RoaringBitmap,
|
||||
) -> anyhow::Result<BTreeMap<u8, RoaringBitmap>>
|
||||
{
|
||||
/// FIXME may be buggy with query like "new new york"
|
||||
fn plane_sweep<'t>(
|
||||
ctx: &'t dyn Context,
|
||||
operations: &[Operation],
|
||||
docid: DocumentId,
|
||||
consecutive: bool,
|
||||
) -> anyhow::Result<Vec<(Position, u8, Position)>> {
|
||||
fn compute_groups_proximity(groups: &Vec<(usize, (Position, u8, Position))>, consecutive: bool) -> Option<(Position, u8, Position)> {
|
||||
// take the inner proximity of the first group as initial
|
||||
let mut proximity = groups.first()?.1.1;
|
||||
let left_most_pos = groups.first()?.1.0;
|
||||
let right_most_pos = groups.last()?.1.2;
|
||||
|
||||
for pair in groups.windows(2) {
|
||||
if let [(i1, (_, _, rpos1)), (i2, (lpos2, prox2, _))] = pair {
|
||||
// if a pair overlap, meaning that they share at least a word, we return None
|
||||
if rpos1 >= lpos2 { return None }
|
||||
// if groups are in the good order (query order) we remove 1 to the proximity
|
||||
// the proximity is clamped to 7
|
||||
let pair_proximity = if i1 < i2 {
|
||||
(*lpos2 - *rpos1 - 1).min(7)
|
||||
} else {
|
||||
(*lpos2 - *rpos1).min(7)
|
||||
};
|
||||
|
||||
proximity += pair_proximity as u8 + prox2;
|
||||
}
|
||||
}
|
||||
|
||||
// if groups should be consecutives, we will only accept groups with a proximity of 0
|
||||
if !consecutive || proximity == 0 {
|
||||
Some((left_most_pos, proximity, right_most_pos))
|
||||
} else { None }
|
||||
}
|
||||
|
||||
let groups_len = operations.len();
|
||||
let mut groups_positions = Vec::with_capacity(groups_len);
|
||||
|
||||
for operation in operations {
|
||||
let positions = resolve_operation(ctx, operation, docid)?;
|
||||
groups_positions.push(positions.into_iter());
|
||||
}
|
||||
|
||||
// Pop top elements of each list.
|
||||
let mut current = Vec::with_capacity(groups_len);
|
||||
for (i, positions) in groups_positions.iter_mut().enumerate() {
|
||||
match positions.next() {
|
||||
Some(p) => current.push((i, p)),
|
||||
// if a group return None, it means that the document does not contain all the words,
|
||||
// we return an empty result.
|
||||
None => return Ok(Vec::new()),
|
||||
}
|
||||
}
|
||||
|
||||
// Sort k elements by their positions.
|
||||
current.sort_unstable_by_key(|(_, p)| *p);
|
||||
|
||||
// Find leftmost and rightmost group and their positions.
|
||||
let mut leftmost = *current.first().unwrap();
|
||||
let mut rightmost = *current.last().unwrap();
|
||||
|
||||
let mut output = Vec::new();
|
||||
loop {
|
||||
// Find the position p of the next elements of a list of the leftmost group.
|
||||
// If the list is empty, break the loop.
|
||||
let p = groups_positions[leftmost.0].next().map(|p| (leftmost.0, p));
|
||||
|
||||
// let q be the position q of second group of the interval.
|
||||
let q = current[1];
|
||||
|
||||
let mut leftmost_index = 0;
|
||||
|
||||
// If p > r, then the interval [l, r] is minimal and
|
||||
// we insert it into the heap according to its size.
|
||||
if p.map_or(true, |p| p.1 > rightmost.1) {
|
||||
leftmost_index = current[0].0;
|
||||
if let Some(group) = compute_groups_proximity(¤t, consecutive) {
|
||||
output.push(group);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO not sure about breaking here or when the p list is found empty.
|
||||
let p = match p {
|
||||
Some(p) => p,
|
||||
None => break,
|
||||
};
|
||||
|
||||
// Remove the leftmost group P in the interval,
|
||||
// and pop the same group from a list.
|
||||
current[leftmost_index] = p;
|
||||
|
||||
if p.1 > rightmost.1 {
|
||||
// if [l, r] is minimal, let r = p and l = q.
|
||||
rightmost = p;
|
||||
leftmost = q;
|
||||
} else {
|
||||
// Ohterwise, let l = min{p,q}.
|
||||
leftmost = if p.1 < q.1 { p } else { q };
|
||||
}
|
||||
|
||||
// Then update the interval and order of groups_positions in the interval.
|
||||
current.sort_unstable_by_key(|(_, p)| *p);
|
||||
}
|
||||
|
||||
// Sort the list according to the size and the positions.
|
||||
output.sort_unstable();
|
||||
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
fn resolve_operation<'t>(
|
||||
ctx: &'t dyn Context,
|
||||
query_tree: &Operation,
|
||||
docid: DocumentId,
|
||||
) -> anyhow::Result<Vec<(Position, u8, Position)>> {
|
||||
use Operation::{And, Consecutive, Or};
|
||||
|
||||
match query_tree {
|
||||
And(ops) => plane_sweep(ctx, ops, docid, false),
|
||||
Consecutive(ops) => plane_sweep(ctx, ops, docid, true),
|
||||
Or(_, ops) => {
|
||||
let mut result = Vec::new();
|
||||
for op in ops {
|
||||
result.extend(resolve_operation(ctx, op, docid)?)
|
||||
}
|
||||
|
||||
result.sort_unstable();
|
||||
Ok(result)
|
||||
},
|
||||
Operation::Query(Query {prefix, kind}) => {
|
||||
let fst = ctx.words_fst();
|
||||
let words = match kind {
|
||||
QueryKind::Exact { word, .. } => {
|
||||
if *prefix {
|
||||
word_derivations(word, true, 0, fst)?
|
||||
} else {
|
||||
vec![(word.to_string(), 0)]
|
||||
}
|
||||
},
|
||||
QueryKind::Tolerant { typo, word } => {
|
||||
word_derivations(word, *prefix, *typo, fst)?
|
||||
}
|
||||
};
|
||||
|
||||
let mut result = Vec::new();
|
||||
for (word, _) in words {
|
||||
if let Some(positions) = ctx.docid_word_positions(docid, &word)? {
|
||||
let iter = positions.iter().map(|p| (p, 0, p));
|
||||
result.extend(iter);
|
||||
}
|
||||
}
|
||||
|
||||
result.sort_unstable();
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut candidates = BTreeMap::new();
|
||||
for docid in allowed_candidates {
|
||||
let positions = resolve_operation(ctx, query_tree, docid)?;
|
||||
let best_proximity = positions.into_iter().min_by_key(|(_, proximity, _)| *proximity);
|
||||
let best_proximity = best_proximity.map(|(_, proximity, _)| proximity).unwrap_or(7);
|
||||
candidates.entry(best_proximity).or_insert_with(RoaringBitmap::new).insert(docid);
|
||||
}
|
||||
|
||||
Ok(candidates)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user