439: Optimize typo criterion r=Kerollmops a=MarinPostma

This pr implements a couple of optimization for the typo criterion:

- clamp max typo on concatenated query words to 1: By considering that a concatenated query word is a typo, we clamp the max number of typos allowed o it to 1. This is useful because we noticed that concatenated query words often introduced words with 2 typos in queries that otherwise didn't allow for 2 typo words.

- Make typos on the first letter count for 2. This change is a big performance gain: by considering the typos on the first letter to count as 2 typos, we drastically restrict the search space for 1 typo, and if we reach 2 typos, the search space is reduced as well, as we only consider: (2 typos ∩ correct first letter) ∪ (wrong first letter ∩ 1 typo) instead of 2 typos anywhere in the word.

## benches
```
group                                                                                                    main                                   typo
-----                                                                                                    ----                                   ----
smol-songs.csv: asc + default/Notstandskomitee                                                           2.51      5.8±0.01ms        ? ?/sec    1.00      2.3±0.01ms        ? ?/sec
smol-songs.csv: asc + default/charles                                                                    2.48      3.0±0.01ms        ? ?/sec    1.00   1190.9±1.29µs        ? ?/sec
smol-songs.csv: asc + default/charles mingus                                                             5.56     10.8±0.01ms        ? ?/sec    1.00   1935.3±1.00µs        ? ?/sec
smol-songs.csv: asc + default/david                                                                      1.65      3.9±0.00ms        ? ?/sec    1.00      2.4±0.01ms        ? ?/sec
smol-songs.csv: asc + default/david bowie                                                                3.34     12.5±0.02ms        ? ?/sec    1.00      3.7±0.00ms        ? ?/sec
smol-songs.csv: asc + default/john                                                                       1.00   1849.7±3.74µs        ? ?/sec    1.01   1875.1±4.65µs        ? ?/sec
smol-songs.csv: asc + default/marcus miller                                                              4.32     15.7±0.01ms        ? ?/sec    1.00      3.6±0.01ms        ? ?/sec
smol-songs.csv: asc + default/michael jackson                                                            3.31     12.5±0.01ms        ? ?/sec    1.00      3.8±0.00ms        ? ?/sec
smol-songs.csv: asc + default/tamo                                                                       1.05    565.4±0.86µs        ? ?/sec    1.00    539.3±1.22µs        ? ?/sec
smol-songs.csv: asc + default/thelonious monk                                                            3.49     11.5±0.01ms        ? ?/sec    1.00      3.3±0.00ms        ? ?/sec
smol-songs.csv: asc/Notstandskomitee                                                                     2.59      5.6±0.02ms        ? ?/sec    1.00      2.2±0.01ms        ? ?/sec
smol-songs.csv: asc/charles                                                                              6.05      2.1±0.00ms        ? ?/sec    1.00    347.8±0.60µs        ? ?/sec
smol-songs.csv: asc/charles mingus                                                                       14.46     9.4±0.01ms        ? ?/sec    1.00    649.2±0.97µs        ? ?/sec
smol-songs.csv: asc/david                                                                                3.87      2.4±0.00ms        ? ?/sec    1.00    618.2±0.69µs        ? ?/sec
smol-songs.csv: asc/david bowie                                                                          10.14     9.8±0.01ms        ? ?/sec    1.00    970.8±1.55µs        ? ?/sec
smol-songs.csv: asc/john                                                                                 1.00    546.5±1.10µs        ? ?/sec    1.00    547.1±2.11µs        ? ?/sec
smol-songs.csv: asc/marcus miller                                                                        11.45    10.4±0.06ms        ? ?/sec    1.00    907.9±1.37µs        ? ?/sec
smol-songs.csv: asc/michael jackson                                                                      10.56     9.7±0.01ms        ? ?/sec    1.00    919.6±1.03µs        ? ?/sec
smol-songs.csv: asc/tamo                                                                                 1.03     43.3±0.18µs        ? ?/sec    1.00     42.2±0.23µs        ? ?/sec
smol-songs.csv: asc/thelonious monk                                                                      4.16     10.7±0.02ms        ? ?/sec    1.00      2.6±0.00ms        ? ?/sec
smol-songs.csv: basic filter: <=/Notstandskomitee                                                        1.00     95.7±0.20µs        ? ?/sec    1.15   109.6±10.40µs        ? ?/sec
smol-songs.csv: basic filter: <=/charles                                                                 1.00     27.8±0.15µs        ? ?/sec    1.01     27.9±0.18µs        ? ?/sec
smol-songs.csv: basic filter: <=/charles mingus                                                          1.72    119.2±0.67µs        ? ?/sec    1.00     69.1±0.13µs        ? ?/sec
smol-songs.csv: basic filter: <=/david                                                                   1.00     22.3±0.33µs        ? ?/sec    1.05     23.4±0.19µs        ? ?/sec
smol-songs.csv: basic filter: <=/david bowie                                                             1.59     86.9±0.79µs        ? ?/sec    1.00     54.5±0.31µs        ? ?/sec
smol-songs.csv: basic filter: <=/john                                                                    1.00     17.9±0.06µs        ? ?/sec    1.06     18.9±0.15µs        ? ?/sec
smol-songs.csv: basic filter: <=/marcus miller                                                           1.65    102.7±1.63µs        ? ?/sec    1.00     62.3±0.18µs        ? ?/sec
smol-songs.csv: basic filter: <=/michael jackson                                                         1.76    128.2±1.85µs        ? ?/sec    1.00     72.9±0.19µs        ? ?/sec
smol-songs.csv: basic filter: <=/tamo                                                                    1.00     17.9±0.13µs        ? ?/sec    1.05     18.7±0.20µs        ? ?/sec
smol-songs.csv: basic filter: <=/thelonious monk                                                         1.53    157.5±2.38µs        ? ?/sec    1.00    102.8±0.88µs        ? ?/sec
smol-songs.csv: basic filter: TO/Notstandskomitee                                                        1.00    100.9±4.36µs        ? ?/sec    1.04    105.0±8.25µs        ? ?/sec
smol-songs.csv: basic filter: TO/charles                                                                 1.00     28.4±0.36µs        ? ?/sec    1.03     29.4±0.33µs        ? ?/sec
smol-songs.csv: basic filter: TO/charles mingus                                                          1.71    118.1±1.08µs        ? ?/sec    1.00     68.9±0.26µs        ? ?/sec
smol-songs.csv: basic filter: TO/david                                                                   1.00     24.0±0.26µs        ? ?/sec    1.03     24.6±0.43µs        ? ?/sec
smol-songs.csv: basic filter: TO/david bowie                                                             1.72     95.2±0.30µs        ? ?/sec    1.00     55.2±0.14µs        ? ?/sec
smol-songs.csv: basic filter: TO/john                                                                    1.00     18.8±0.09µs        ? ?/sec    1.06     19.8±0.17µs        ? ?/sec
smol-songs.csv: basic filter: TO/marcus miller                                                           1.61    102.4±1.65µs        ? ?/sec    1.00     63.4±0.24µs        ? ?/sec
smol-songs.csv: basic filter: TO/michael jackson                                                         1.77    132.1±1.41µs        ? ?/sec    1.00     74.5±0.59µs        ? ?/sec
smol-songs.csv: basic filter: TO/tamo                                                                    1.00     18.2±0.14µs        ? ?/sec    1.05     19.2±0.46µs        ? ?/sec
smol-songs.csv: basic filter: TO/thelonious monk                                                         1.49    150.8±1.92µs        ? ?/sec    1.00    101.3±0.44µs        ? ?/sec
smol-songs.csv: basic placeholder/                                                                       1.00     27.3±0.07µs        ? ?/sec    1.03     28.0±0.05µs        ? ?/sec
smol-songs.csv: basic with quote/"Notstandskomitee"                                                      1.00    122.4±0.17µs        ? ?/sec    1.03    125.6±0.16µs        ? ?/sec
smol-songs.csv: basic with quote/"charles"                                                               1.00     88.8±0.30µs        ? ?/sec    1.00     88.4±0.15µs        ? ?/sec
smol-songs.csv: basic with quote/"charles" "mingus"                                                      1.00    685.2±0.74µs        ? ?/sec    1.01    689.4±6.07µs        ? ?/sec
smol-songs.csv: basic with quote/"david"                                                                 1.00    161.6±0.42µs        ? ?/sec    1.01    162.6±0.17µs        ? ?/sec
smol-songs.csv: basic with quote/"david" "bowie"                                                         1.00    731.7±0.73µs        ? ?/sec    1.02    743.1±0.77µs        ? ?/sec
smol-songs.csv: basic with quote/"john"                                                                  1.00    267.1±0.33µs        ? ?/sec    1.01    270.9±0.33µs        ? ?/sec
smol-songs.csv: basic with quote/"marcus" "miller"                                                       1.00    138.7±0.31µs        ? ?/sec    1.02    140.9±0.13µs        ? ?/sec
smol-songs.csv: basic with quote/"michael" "jackson"                                                     1.01    841.4±0.72µs        ? ?/sec    1.00    833.8±0.92µs        ? ?/sec
smol-songs.csv: basic with quote/"tamo"                                                                  1.01    189.2±0.26µs        ? ?/sec    1.00    188.2±0.71µs        ? ?/sec
smol-songs.csv: basic with quote/"thelonious" "monk"                                                     1.00   1100.5±1.36µs        ? ?/sec    1.01   1111.7±2.17µs        ? ?/sec
smol-songs.csv: basic without quote/Notstandskomitee                                                     3.40      7.9±0.02ms        ? ?/sec    1.00      2.3±0.02ms        ? ?/sec
smol-songs.csv: basic without quote/charles                                                              2.57    494.4±0.89µs        ? ?/sec    1.00    192.5±0.18µs        ? ?/sec
smol-songs.csv: basic without quote/charles mingus                                                       1.29      2.8±0.02ms        ? ?/sec    1.00      2.1±0.01ms        ? ?/sec
smol-songs.csv: basic without quote/david                                                                1.95    623.8±0.90µs        ? ?/sec    1.00    319.2±1.22µs        ? ?/sec
smol-songs.csv: basic without quote/david bowie                                                          1.12      5.9±0.00ms        ? ?/sec    1.00      5.2±0.00ms        ? ?/sec
smol-songs.csv: basic without quote/john                                                                 1.24   1340.9±2.25µs        ? ?/sec    1.00   1084.7±7.76µs        ? ?/sec
smol-songs.csv: basic without quote/marcus miller                                                        7.97     14.6±0.01ms        ? ?/sec    1.00   1826.0±6.84µs        ? ?/sec
smol-songs.csv: basic without quote/michael jackson                                                      1.19      3.9±0.00ms        ? ?/sec    1.00      3.3±0.00ms        ? ?/sec
smol-songs.csv: basic without quote/tamo                                                                 1.65    737.7±3.58µs        ? ?/sec    1.00    446.7±0.51µs        ? ?/sec
smol-songs.csv: basic without quote/thelonious monk                                                      1.16      4.5±0.02ms        ? ?/sec    1.00      3.9±0.04ms        ? ?/sec
smol-songs.csv: big filter/Notstandskomitee                                                              3.27      7.6±0.02ms        ? ?/sec    1.00      2.3±0.01ms        ? ?/sec
smol-songs.csv: big filter/charles                                                                       8.26   1957.5±1.37µs        ? ?/sec    1.00    236.8±0.34µs        ? ?/sec
smol-songs.csv: big filter/charles mingus                                                                18.49    11.2±0.06ms        ? ?/sec    1.00    607.7±3.03µs        ? ?/sec
smol-songs.csv: big filter/david                                                                         3.78      2.4±0.00ms        ? ?/sec    1.00    622.8±0.80µs        ? ?/sec
smol-songs.csv: big filter/david bowie                                                                   9.00     12.0±0.01ms        ? ?/sec    1.00   1336.0±3.17µs        ? ?/sec
smol-songs.csv: big filter/john                                                                          1.00    554.2±0.95µs        ? ?/sec    1.01    560.4±0.79µs        ? ?/sec
smol-songs.csv: big filter/marcus miller                                                                 18.09    12.0±0.01ms        ? ?/sec    1.00    664.7±0.60µs        ? ?/sec
smol-songs.csv: big filter/michael jackson                                                               8.43     12.0±0.01ms        ? ?/sec    1.00   1421.6±1.37µs        ? ?/sec
smol-songs.csv: big filter/tamo                                                                          1.00     86.3±0.14µs        ? ?/sec    1.01     87.3±0.21µs        ? ?/sec
smol-songs.csv: big filter/thelonious monk                                                               5.55     14.3±0.02ms        ? ?/sec    1.00      2.6±0.01ms        ? ?/sec
smol-songs.csv: desc + default/Notstandskomitee                                                          2.52      5.8±0.01ms        ? ?/sec    1.00      2.3±0.01ms        ? ?/sec
smol-songs.csv: desc + default/charles                                                                   3.04      2.7±0.01ms        ? ?/sec    1.00    893.4±1.08µs        ? ?/sec
smol-songs.csv: desc + default/charles mingus                                                            6.77     10.3±0.01ms        ? ?/sec    1.00   1520.8±1.90µs        ? ?/sec
smol-songs.csv: desc + default/david                                                                     1.39      5.7±0.00ms        ? ?/sec    1.00      4.1±0.00ms        ? ?/sec
smol-songs.csv: desc + default/david bowie                                                               2.34     15.8±0.02ms        ? ?/sec    1.00      6.7±0.01ms        ? ?/sec
smol-songs.csv: desc + default/john                                                                      1.00      2.5±0.00ms        ? ?/sec    1.02      2.6±0.01ms        ? ?/sec
smol-songs.csv: desc + default/marcus miller                                                             5.06     14.5±0.02ms        ? ?/sec    1.00      2.9±0.01ms        ? ?/sec
smol-songs.csv: desc + default/michael jackson                                                           2.64     14.1±0.05ms        ? ?/sec    1.00      5.4±0.00ms        ? ?/sec
smol-songs.csv: desc + default/tamo                                                                      1.00    567.0±0.65µs        ? ?/sec    1.00    565.7±0.97µs        ? ?/sec
smol-songs.csv: desc + default/thelonious monk                                                           3.55     11.6±0.02ms        ? ?/sec    1.00      3.3±0.00ms        ? ?/sec
smol-songs.csv: desc/Notstandskomitee                                                                    2.58      5.6±0.02ms        ? ?/sec    1.00      2.2±0.02ms        ? ?/sec
smol-songs.csv: desc/charles                                                                             6.04      2.1±0.00ms        ? ?/sec    1.00    348.1±0.57µs        ? ?/sec
smol-songs.csv: desc/charles mingus                                                                      14.51     9.4±0.01ms        ? ?/sec    1.00    646.7±0.99µs        ? ?/sec
smol-songs.csv: desc/david                                                                               3.86      2.4±0.00ms        ? ?/sec    1.00    620.7±2.46µs        ? ?/sec
smol-songs.csv: desc/david bowie                                                                         10.10     9.8±0.01ms        ? ?/sec    1.00    973.9±3.31µs        ? ?/sec
smol-songs.csv: desc/john                                                                                1.00    545.5±0.78µs        ? ?/sec    1.00    547.2±0.48µs        ? ?/sec
smol-songs.csv: desc/marcus miller                                                                       11.39    10.3±0.01ms        ? ?/sec    1.00    903.7±0.95µs        ? ?/sec
smol-songs.csv: desc/michael jackson                                                                     10.51     9.7±0.01ms        ? ?/sec    1.00    924.7±2.02µs        ? ?/sec
smol-songs.csv: desc/tamo                                                                                1.01     43.2±0.33µs        ? ?/sec    1.00     42.6±0.35µs        ? ?/sec
smol-songs.csv: desc/thelonious monk                                                                     4.19     10.8±0.03ms        ? ?/sec    1.00      2.6±0.00ms        ? ?/sec
smol-songs.csv: prefix search/a                                                                          1.00   1008.7±1.00µs        ? ?/sec    1.00   1005.5±0.91µs        ? ?/sec
smol-songs.csv: prefix search/b                                                                          1.00    885.0±0.70µs        ? ?/sec    1.01    890.6±1.11µs        ? ?/sec
smol-songs.csv: prefix search/i                                                                          1.00   1051.8±1.25µs        ? ?/sec    1.00   1056.6±4.12µs        ? ?/sec
smol-songs.csv: prefix search/s                                                                          1.00    724.7±1.77µs        ? ?/sec    1.00    721.6±0.59µs        ? ?/sec
smol-songs.csv: prefix search/x                                                                          1.01    212.4±0.21µs        ? ?/sec    1.00    210.9±0.38µs        ? ?/sec
smol-songs.csv: proximity/7000 Danses Un Jour Dans Notre Vie                                             18.55    48.5±0.09ms        ? ?/sec    1.00      2.6±0.03ms        ? ?/sec
smol-songs.csv: proximity/The Disneyland Sing-Along Chorus                                               8.41     56.7±0.45ms        ? ?/sec    1.00      6.7±0.05ms        ? ?/sec
smol-songs.csv: proximity/Under Great Northern Lights                                                    15.74    38.9±0.14ms        ? ?/sec    1.00      2.5±0.00ms        ? ?/sec
smol-songs.csv: proximity/black saint sinner lady                                                        11.82    40.1±0.13ms        ? ?/sec    1.00      3.4±0.02ms        ? ?/sec
smol-songs.csv: proximity/les dangeureuses 1960                                                          6.90     26.1±0.13ms        ? ?/sec    1.00      3.8±0.04ms        ? ?/sec
smol-songs.csv: typo/Arethla Franklin                                                                    14.93     5.8±0.01ms        ? ?/sec    1.00    390.1±1.89µs        ? ?/sec
smol-songs.csv: typo/Disnaylande                                                                         3.18      7.3±0.01ms        ? ?/sec    1.00      2.3±0.00ms        ? ?/sec
smol-songs.csv: typo/dire straights                                                                      5.55     15.2±0.02ms        ? ?/sec    1.00      2.7±0.00ms        ? ?/sec
smol-songs.csv: typo/fear of the duck                                                                    28.03    20.0±0.03ms        ? ?/sec    1.00    713.3±1.54µs        ? ?/sec
smol-songs.csv: typo/indochie                                                                            19.25  1851.4±2.38µs        ? ?/sec    1.00     96.2±0.13µs        ? ?/sec
smol-songs.csv: typo/indochien                                                                           14.66  1887.7±3.18µs        ? ?/sec    1.00    128.8±0.18µs        ? ?/sec
smol-songs.csv: typo/klub des loopers                                                                    37.73    18.0±0.02ms        ? ?/sec    1.00    476.7±0.73µs        ? ?/sec
smol-songs.csv: typo/michel depech                                                                       10.17     5.8±0.01ms        ? ?/sec    1.00    565.8±1.16µs        ? ?/sec
smol-songs.csv: typo/mongus                                                                              15.33  1897.4±3.44µs        ? ?/sec    1.00    123.8±0.13µs        ? ?/sec
smol-songs.csv: typo/stromal                                                                             14.63  1859.3±2.40µs        ? ?/sec    1.00    127.1±0.29µs        ? ?/sec
smol-songs.csv: typo/the white striper                                                                   10.83     9.4±0.01ms        ? ?/sec    1.00    866.0±0.98µs        ? ?/sec
smol-songs.csv: typo/thelonius monk                                                                      14.40     3.8±0.00ms        ? ?/sec    1.00    261.5±1.30µs        ? ?/sec
smol-songs.csv: words/7000 Danses / Le Baiser / je me trompe de mots                                     5.54     70.8±0.09ms        ? ?/sec    1.00     12.8±0.03ms        ? ?/sec
smol-songs.csv: words/Bring Your Daughter To The Slaughter but now this is not part of the title         3.48    119.8±0.14ms        ? ?/sec    1.00     34.4±0.04ms        ? ?/sec
smol-songs.csv: words/The Disneyland Children's Sing-Alone song                                          8.98     71.9±0.12ms        ? ?/sec    1.00      8.0±0.01ms        ? ?/sec
smol-songs.csv: words/les liaisons dangeureuses 1793                                                     11.88    37.4±0.07ms        ? ?/sec    1.00      3.1±0.01ms        ? ?/sec
smol-songs.csv: words/seven nation mummy                                                                 22.86    23.4±0.04ms        ? ?/sec    1.00   1024.8±1.57µs        ? ?/sec
smol-songs.csv: words/the black saint and the sinner lady and the good doggo                             2.76    124.4±0.15ms        ? ?/sec    1.00     45.1±0.09ms        ? ?/sec
smol-songs.csv: words/whathavenotnsuchforth and a good amount of words to pop to match the first one     2.52    107.0±0.23ms        ? ?/sec    1.00     42.4±0.66ms        ? ?/sec

group                                                                                    main-wiki                              typo-wiki
-----                                                                                    ---------                              ---------
smol-wiki-articles.csv: basic placeholder/                                               1.02     13.7±0.02µs        ? ?/sec    1.00     13.4±0.03µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"film"                                          1.02    409.8±0.67µs        ? ?/sec    1.00    402.6±0.48µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"france"                                        1.00    325.9±0.91µs        ? ?/sec    1.00    326.4±0.49µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"japan"                                         1.00    218.4±0.26µs        ? ?/sec    1.01    220.5±0.20µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"machine"                                       1.00    143.0±0.12µs        ? ?/sec    1.04    148.8±0.21µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"miles" "davis"                                 1.00     11.7±0.06ms        ? ?/sec    1.00     11.8±0.01ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"mingus"                                        1.00      4.4±0.03ms        ? ?/sec    1.00      4.4±0.00ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"rock" "and" "roll"                             1.00     43.5±0.08ms        ? ?/sec    1.01     43.8±0.06ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"spain"                                         1.00    137.3±0.35µs        ? ?/sec    1.05    144.4±0.23µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/film                                         1.00    125.3±0.30µs        ? ?/sec    1.06    133.1±0.37µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/france                                       1.21   1782.6±1.65µs        ? ?/sec    1.00   1477.0±1.39µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/japan                                        1.28   1363.9±0.80µs        ? ?/sec    1.00   1064.3±1.79µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/machine                                      1.73    760.3±0.81µs        ? ?/sec    1.00    439.6±0.75µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/miles davis                                  1.03     17.0±0.03ms        ? ?/sec    1.00     16.5±0.02ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/mingus                                       1.07      5.3±0.01ms        ? ?/sec    1.00      5.0±0.00ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/rock and roll                                1.01     63.9±0.18ms        ? ?/sec    1.00     63.0±0.07ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/spain                                        2.07    667.4±0.93µs        ? ?/sec    1.00    322.8±0.29µs        ? ?/sec
smol-wiki-articles.csv: prefix search/c                                                  1.00    343.1±0.47µs        ? ?/sec    1.00    344.0±0.34µs        ? ?/sec
smol-wiki-articles.csv: prefix search/g                                                  1.00    374.4±3.42µs        ? ?/sec    1.00    374.1±0.44µs        ? ?/sec
smol-wiki-articles.csv: prefix search/j                                                  1.00    359.9±0.31µs        ? ?/sec    1.00    361.2±0.79µs        ? ?/sec
smol-wiki-articles.csv: prefix search/q                                                  1.01    102.0±0.12µs        ? ?/sec    1.00    101.4±0.32µs        ? ?/sec
smol-wiki-articles.csv: prefix search/t                                                  1.00    536.7±1.39µs        ? ?/sec    1.00    534.3±0.84µs        ? ?/sec
smol-wiki-articles.csv: prefix search/x                                                  1.00    400.9±1.00µs        ? ?/sec    1.00    399.5±0.45µs        ? ?/sec
smol-wiki-articles.csv: proximity/april paris                                            3.86     14.4±0.01ms        ? ?/sec    1.00      3.7±0.01ms        ? ?/sec
smol-wiki-articles.csv: proximity/diesel engine                                          12.98    10.4±0.01ms        ? ?/sec    1.00    803.5±1.13µs        ? ?/sec
smol-wiki-articles.csv: proximity/herald sings                                           1.00     12.7±0.06ms        ? ?/sec    5.29     67.1±0.09ms        ? ?/sec
smol-wiki-articles.csv: proximity/tea two                                                6.48   1452.1±2.78µs        ? ?/sec    1.00    224.1±0.38µs        ? ?/sec
smol-wiki-articles.csv: typo/Disnaylande                                                 3.89      8.5±0.01ms        ? ?/sec    1.00      2.2±0.01ms        ? ?/sec
smol-wiki-articles.csv: typo/aritmetric                                                  3.78     10.3±0.01ms        ? ?/sec    1.00      2.7±0.00ms        ? ?/sec
smol-wiki-articles.csv: typo/linax                                                       8.91   1426.7±0.97µs        ? ?/sec    1.00    160.1±0.18µs        ? ?/sec
smol-wiki-articles.csv: typo/migrosoft                                                   7.48   1417.3±5.84µs        ? ?/sec    1.00    189.5±0.88µs        ? ?/sec
smol-wiki-articles.csv: typo/nympalidea                                                  3.96      7.2±0.01ms        ? ?/sec    1.00   1810.1±2.03µs        ? ?/sec
smol-wiki-articles.csv: typo/phytogropher                                                3.71      7.2±0.01ms        ? ?/sec    1.00   1934.3±6.51µs        ? ?/sec
smol-wiki-articles.csv: typo/sisan                                                       6.44   1497.2±1.38µs        ? ?/sec    1.00    232.7±0.94µs        ? ?/sec
smol-wiki-articles.csv: typo/the fronce                                                  6.92      2.9±0.00ms        ? ?/sec    1.00    418.0±1.76µs        ? ?/sec
smol-wiki-articles.csv: words/Abraham machin                                             16.63    10.8±0.01ms        ? ?/sec    1.00    649.7±1.08µs        ? ?/sec
smol-wiki-articles.csv: words/Idaho Bellevue pizza                                       27.15    25.6±0.03ms        ? ?/sec    1.00    944.2±5.07µs        ? ?/sec
smol-wiki-articles.csv: words/Kameya Tokujirō mingus monk                                26.87    40.7±0.05ms        ? ?/sec    1.00   1515.3±2.73µs        ? ?/sec
smol-wiki-articles.csv: words/Ulrich Hensel meilisearch milli                            11.99    48.8±0.10ms        ? ?/sec    1.00      4.1±0.02ms        ? ?/sec
smol-wiki-articles.csv: words/the black saint and the sinner lady and the good doggo     4.90    110.0±0.15ms        ? ?/sec    1.00     22.4±0.03ms        ? ?/sec

```

Co-authored-by: mpostma <postma.marin@protonmail.com>
Co-authored-by: ad hoc <postma.marin@protonmail.com>
This commit is contained in:
bors[bot] 2022-03-15 16:43:36 +00:00 committed by GitHub
commit ad4c982c68
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 263 additions and 22 deletions

View File

@ -0,0 +1,187 @@
/// This mod is necessary until https://github.com/BurntSushi/fst/pull/137 gets merged.
/// All credits for this code go to BurntSushi.
use fst::Automaton;
pub struct StartsWith<A>(pub A);
/// The `Automaton` state for `StartsWith<A>`.
pub struct StartsWithState<A: Automaton>(pub StartsWithStateKind<A>);
impl<A: Automaton> Clone for StartsWithState<A>
where
A::State: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
/// The inner state of a `StartsWithState<A>`.
pub enum StartsWithStateKind<A: Automaton> {
/// Sink state that is reached when the automaton has matched the prefix.
Done,
/// State in which the automaton is while it hasn't matched the prefix.
Running(A::State),
}
impl<A: Automaton> Clone for StartsWithStateKind<A>
where
A::State: Clone,
{
fn clone(&self) -> Self {
match self {
StartsWithStateKind::Done => StartsWithStateKind::Done,
StartsWithStateKind::Running(inner) => StartsWithStateKind::Running(inner.clone()),
}
}
}
impl<A: Automaton> Automaton for StartsWith<A> {
type State = StartsWithState<A>;
fn start(&self) -> StartsWithState<A> {
StartsWithState({
let inner = self.0.start();
if self.0.is_match(&inner) {
StartsWithStateKind::Done
} else {
StartsWithStateKind::Running(inner)
}
})
}
fn is_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
StartsWithStateKind::Done => true,
StartsWithStateKind::Running(_) => false,
}
}
fn can_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
StartsWithStateKind::Done => true,
StartsWithStateKind::Running(ref inner) => self.0.can_match(inner),
}
}
fn will_always_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
StartsWithStateKind::Done => true,
StartsWithStateKind::Running(_) => false,
}
}
fn accept(&self, state: &StartsWithState<A>, byte: u8) -> StartsWithState<A> {
StartsWithState(match state.0 {
StartsWithStateKind::Done => StartsWithStateKind::Done,
StartsWithStateKind::Running(ref inner) => {
let next_inner = self.0.accept(inner, byte);
if self.0.is_match(&next_inner) {
StartsWithStateKind::Done
} else {
StartsWithStateKind::Running(next_inner)
}
}
})
}
}
/// An automaton that matches when one of its component automata match.
#[derive(Clone, Debug)]
pub struct Union<A, B>(pub A, pub B);
/// The `Automaton` state for `Union<A, B>`.
pub struct UnionState<A: Automaton, B: Automaton>(pub A::State, pub B::State);
impl<A: Automaton, B: Automaton> Clone for UnionState<A, B>
where
A::State: Clone,
B::State: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone(), self.1.clone())
}
}
impl<A: Automaton, B: Automaton> Automaton for Union<A, B> {
type State = UnionState<A, B>;
fn start(&self) -> UnionState<A, B> {
UnionState(self.0.start(), self.1.start())
}
fn is_match(&self, state: &UnionState<A, B>) -> bool {
self.0.is_match(&state.0) || self.1.is_match(&state.1)
}
fn can_match(&self, state: &UnionState<A, B>) -> bool {
self.0.can_match(&state.0) || self.1.can_match(&state.1)
}
fn will_always_match(&self, state: &UnionState<A, B>) -> bool {
self.0.will_always_match(&state.0) || self.1.will_always_match(&state.1)
}
fn accept(&self, state: &UnionState<A, B>, byte: u8) -> UnionState<A, B> {
UnionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
}
}
/// An automaton that matches when both of its component automata match.
#[derive(Clone, Debug)]
pub struct Intersection<A, B>(pub A, pub B);
/// The `Automaton` state for `Intersection<A, B>`.
pub struct IntersectionState<A: Automaton, B: Automaton>(pub A::State, pub B::State);
impl<A: Automaton, B: Automaton> Clone for IntersectionState<A, B>
where
A::State: Clone,
B::State: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone(), self.1.clone())
}
}
impl<A: Automaton, B: Automaton> Automaton for Intersection<A, B> {
type State = IntersectionState<A, B>;
fn start(&self) -> IntersectionState<A, B> {
IntersectionState(self.0.start(), self.1.start())
}
fn is_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.is_match(&state.0) && self.1.is_match(&state.1)
}
fn can_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.can_match(&state.0) && self.1.can_match(&state.1)
}
fn will_always_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.will_always_match(&state.0) && self.1.will_always_match(&state.1)
}
fn accept(&self, state: &IntersectionState<A, B>, byte: u8) -> IntersectionState<A, B> {
IntersectionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
}
}
/// An automaton that matches exactly when the automaton it wraps does not.
#[derive(Clone, Debug)]
pub struct Complement<A>(pub A);
/// The `Automaton` state for `Complement<A>`.
pub struct ComplementState<A: Automaton>(pub A::State);
impl<A: Automaton> Clone for ComplementState<A>
where
A::State: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<A: Automaton> Automaton for Complement<A> {
type State = ComplementState<A>;
fn start(&self) -> ComplementState<A> {
ComplementState(self.0.start())
}
fn is_match(&self, state: &ComplementState<A>) -> bool {
!self.0.is_match(&state.0)
}
fn can_match(&self, state: &ComplementState<A>) -> bool {
!self.0.will_always_match(&state.0)
}
fn will_always_match(&self, state: &ComplementState<A>) -> bool {
!self.0.can_match(&state.0)
}
fn accept(&self, state: &ComplementState<A>, byte: u8) -> ComplementState<A> {
ComplementState(self.0.accept(&state.0, byte))
}
}

View File

@ -7,7 +7,8 @@ use std::str::Utf8Error;
use std::time::Instant;
use distinct::{Distinct, DocIter, FacetDistinct, NoopDistinct};
use fst::{IntoStreamer, Streamer};
use fst::automaton::Str;
use fst::{Automaton, IntoStreamer, Streamer};
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
use log::debug;
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig};
@ -15,6 +16,7 @@ use once_cell::sync::Lazy;
use roaring::bitmap::RoaringBitmap;
pub use self::facet::{FacetDistribution, FacetNumberIter, Filter};
use self::fst_utils::{Complement, Intersection, StartsWith, Union};
pub use self::matching_words::MatchingWords;
use self::query_tree::QueryTreeBuilder;
use crate::error::UserError;
@ -29,6 +31,7 @@ static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
mod criteria;
mod distinct;
mod facet;
mod fst_utils;
mod matching_words;
mod query_tree;
@ -284,20 +287,66 @@ pub fn word_derivations<'c>(
Entry::Occupied(entry) => Ok(entry.into_mut()),
Entry::Vacant(entry) => {
let mut derived_words = Vec::new();
let dfa = build_dfa(word, max_typo, is_prefix);
let mut stream = fst.search_with_state(&dfa).into_stream();
if max_typo == 0 {
if is_prefix {
let prefix = Str::new(word).starts_with();
let mut stream = fst.search(prefix).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let distance = dfa.distance(state);
derived_words.push((word.to_string(), distance.to_u8()));
while let Some(word) = stream.next() {
let word = std::str::from_utf8(word)?;
derived_words.push((word.to_string(), 0));
}
} else if fst.contains(word) {
derived_words.push((word.to_string(), 0));
}
} else {
if max_typo == 1 {
let dfa = build_dfa(word, 1, is_prefix);
let starts = StartsWith(Str::new(get_first(word)));
let mut stream =
fst.search_with_state(Intersection(starts, &dfa)).into_stream();
while let Some((word, state)) = stream.next() {
let word = std::str::from_utf8(word)?;
let d = dfa.distance(state.1);
derived_words.push((word.to_string(), d.to_u8()));
}
} else {
let starts = StartsWith(Str::new(get_first(word)));
let first = Intersection(build_dfa(word, 1, is_prefix), Complement(&starts));
let second_dfa = build_dfa(word, 2, is_prefix);
let second = Intersection(&second_dfa, &starts);
let automaton = Union(first, &second);
let mut stream = fst.search_with_state(automaton).into_stream();
while let Some((found_word, state)) = stream.next() {
let found_word = std::str::from_utf8(found_word)?;
// in the case the typo is on the first letter, we know the number of typo
// is two
if get_first(found_word) != get_first(word) {
derived_words.push((word.to_string(), 2));
} else {
// Else, we know that it is the second dfa that matched and compute the
// correct distance
let d = second_dfa.distance((state.1).0);
derived_words.push((word.to_string(), d.to_u8()));
}
}
}
}
Ok(entry.insert(derived_words))
}
}
}
fn get_first(s: &str) -> &str {
match s.chars().next() {
Some(c) => &s[..c.len_utf8()],
None => panic!("unexpected empty query"),
}
}
pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA {
let lev = match typos {
0 => &LEVDIST0,

View File

@ -260,12 +260,12 @@ fn split_best_frequency(ctx: &impl Context, word: &str) -> heed::Result<Option<O
/// Return the `QueryKind` of a word depending on `authorize_typos`
/// and the provided word length.
fn typos(word: String, authorize_typos: bool) -> QueryKind {
fn typos(word: String, authorize_typos: bool, max_typos: u8) -> QueryKind {
if authorize_typos {
match word.chars().count() {
0..=4 => QueryKind::exact(word),
5..=8 => QueryKind::tolerant(1, word),
_ => QueryKind::tolerant(2, word),
5..=8 => QueryKind::tolerant(1.min(max_typos), word),
_ => QueryKind::tolerant(2.min(max_typos), word),
}
} else {
QueryKind::exact(word)
@ -316,8 +316,10 @@ fn create_query_tree(
if let Some(child) = split_best_frequency(ctx, &word)? {
children.push(child);
}
children
.push(Operation::Query(Query { prefix, kind: typos(word, authorize_typos) }));
children.push(Operation::Query(Query {
prefix,
kind: typos(word, authorize_typos, 2),
}));
Ok(Operation::or(false, children))
}
// create a CONSECUTIVE operation wrapping all word in the phrase
@ -363,8 +365,10 @@ fn create_query_tree(
.collect();
let mut operations = synonyms(ctx, &words)?.unwrap_or_default();
let concat = words.concat();
let query =
Query { prefix: is_prefix, kind: typos(concat, authorize_typos) };
let query = Query {
prefix: is_prefix,
kind: typos(concat, authorize_typos, 1),
};
operations.push(Operation::Query(query));
and_op_children.push(Operation::or(false, operations));
}
@ -655,7 +659,7 @@ mod test {
]),
Operation::Query(Query {
prefix: true,
kind: QueryKind::tolerant(2, "heyfriends".to_string()),
kind: QueryKind::tolerant(1, "heyfriends".to_string()),
}),
],
);
@ -688,7 +692,7 @@ mod test {
]),
Operation::Query(Query {
prefix: false,
kind: QueryKind::tolerant(2, "heyfriends".to_string()),
kind: QueryKind::tolerant(1, "heyfriends".to_string()),
}),
],
);
@ -753,7 +757,7 @@ mod test {
]),
Operation::Query(Query {
prefix: false,
kind: QueryKind::tolerant(2, "helloworld".to_string()),
kind: QueryKind::tolerant(1, "helloworld".to_string()),
}),
],
);
@ -851,7 +855,7 @@ mod test {
]),
Operation::Query(Query {
prefix: false,
kind: QueryKind::tolerant(2, "newyorkcity".to_string()),
kind: QueryKind::tolerant(1, "newyorkcity".to_string()),
}),
],
),
@ -925,7 +929,7 @@ mod test {
]),
Operation::Query(Query {
prefix: false,
kind: QueryKind::tolerant(2, "wordsplitfish".to_string()),
kind: QueryKind::tolerant(1, "wordsplitfish".to_string()),
}),
],
);
@ -1045,7 +1049,7 @@ mod test {
]),
Operation::Query(Query {
prefix: false,
kind: QueryKind::tolerant(2, "heymyfriend".to_string()),
kind: QueryKind::tolerant(1, "heymyfriend".to_string()),
}),
],
),

View File

@ -8,7 +8,7 @@
{"id":"H","word_rank":1,"typo_rank":0,"proximity_rank":1,"attribute_rank":0,"exact_rank":3,"asc_desc_rank":4,"sort_by_rank":1,"geo_rank":202182,"title":"world hello day","description":"holiday observed on november 21 to express that conflicts should be resolved through communication rather than the use of force","tag":"green","_geo": { "lat": 48.875617484531965, "lng": 2.346747821504194 },"":""}
{"id":"I","word_rank":0,"typo_rank":0,"proximity_rank":8,"attribute_rank":338,"exact_rank":3,"asc_desc_rank":3,"sort_by_rank":0,"geo_rank":740667,"title":"hello world song","description":"hello world is a song written by tom douglas tony lane and david lee and recorded by american country music group lady antebellum","tag":"blue","_geo": { "lat": 43.973998070351065, "lng": 3.4661837318345032 },"":""}
{"id":"J","word_rank":1,"typo_rank":0,"proximity_rank":1,"attribute_rank":1,"exact_rank":3,"asc_desc_rank":2,"sort_by_rank":1,"geo_rank":739020,"title":"hello cruel world","description":"hello cruel world is an album by new zealand band tall dwarfs","tag":"green","_geo": { "lat": 43.98920130353838, "lng": 3.480519311627928 },"":""}
{"id":"K","word_rank":0,"typo_rank":2,"proximity_rank":9,"attribute_rank":670,"exact_rank":5,"asc_desc_rank":1,"sort_by_rank":2,"geo_rank":738830,"title":"ello creation system","description":"in few word ello was a construction toy created by the american company mattel to engage girls in construction play","tag":"red","_geo": { "lat": 43.99155030238669, "lng": 3.503453528249425 },"":""}
{"id":"K","word_rank":0,"typo_rank":2,"proximity_rank":9,"attribute_rank":670,"exact_rank":5,"asc_desc_rank":1,"sort_by_rank":2,"geo_rank":738830,"title":"hallo creation system","description":"in few word hallo was a construction toy created by the american company mattel to engage girls in construction play","tag":"red","_geo": { "lat": 43.99155030238669, "lng": 3.503453528249425 },"":""}
{"id":"L","word_rank":0,"typo_rank":0,"proximity_rank":2,"attribute_rank":250,"exact_rank":4,"asc_desc_rank":0,"sort_by_rank":0,"geo_rank":737861,"title":"good morning world","description":"good morning world is an american sitcom broadcast on cbs tv during the 1967 1968 season","tag":"blue","_geo": { "lat": 44.000507750283695, "lng": 3.5116812040621572 },"":""}
{"id":"M","word_rank":0,"typo_rank":0,"proximity_rank":0,"attribute_rank":0,"exact_rank":0,"asc_desc_rank":0,"sort_by_rank":2,"geo_rank":739203,"title":"hello world america","description":"a perfect match for a perfect engine using the query hello world america","tag":"red","_geo": { "lat": 43.99150729038736, "lng": 3.606143957295055 },"":""}
{"id":"N","word_rank":0,"typo_rank":0,"proximity_rank":0,"attribute_rank":0,"exact_rank":1,"asc_desc_rank":4,"sort_by_rank":1,"geo_rank":9499586,"title":"hello world america unleashed","description":"a very good match for a very good engine using the query hello world america","tag":"green","_geo": { "lat": 35.511540843367115, "lng": 138.764368875787 },"":""}

View File

@ -61,6 +61,7 @@ test_criterion!(
vec![Attribute],
vec![]
);
test_criterion!(typo, DISALLOW_OPTIONAL_WORDS, ALLOW_TYPOS, vec![Typo], vec![]);
test_criterion!(
attribute_disallow_typo,
DISALLOW_OPTIONAL_WORDS,